Fit a 5d hyperplane by n points, using the linear fitter directly
This macro shows some features of the TLinearFitter class A 5-d hyperplane is fit, a constant term is assumed in the hyperplane equation (y = a0 + a1*x0 + a2*x1 + a3*x2 + a4*x3 + a5*x4)
par[0]=0.000069+-0.001011
par[1]=3.999934+-0.000164
par[2]=0.999835+-0.000172
par[3]=1.999892+-0.000178
par[4]=2.999967+-0.000185
par[5]=0.199823+-0.000174
chisquare=70.148012
More Points:
par[0]=0.000551+-0.000712
par[1]=3.999910+-0.000121
par[2]=0.999886+-0.000125
par[3]=2.000067+-0.000123
par[4]=2.999915+-0.000127
par[5]=0.199918+-0.000130
chisquare=145.050322490893336
Without Constant
par[0]=3.999913+-0.000121
par[1]=0.999890+-0.000125
par[2]=2.000057+-0.000123
par[3]=2.999919+-0.000127
par[4]=0.199918+-0.000130
chisquare=145.649621
Fixed Constant:
par[0]=0.000536+-0.000712
par[1]=4.000000+-1.000000
par[2]=0.999884+-0.000125
par[3]=2.000070+-0.000123
par[4]=2.999910+-0.000127
par[5]=0.199920+-0.000130
chisquare=145.602523231220914
void fitLinear2()
{
int i;
double *
x=
new double[
n*10*5];
double *
y=
new double[
n*10];
double *
e=
new double[
n*10];
y[i] = 4*
x[0+i*5] +
x[1+i*5] + 2*
x[2+i*5] + 3*
x[3+i*5] + 0.2*
x[4+i*5] + randNum.
Gaus()*
e[i];
}
for (int i=0; i<6; i++)
printf("par[%d]=%f+-%f\n", i, params(i), errors(i));
printf("chisquare=%f\n", chisquare);
y[i] = 4*
x[0+i*5] +
x[1+i*5] + 2*
x[2+i*5] + 3*
x[3+i*5] + 0.2*
x[4+i*5] + randNum.
Gaus()*
e[i];
}
printf("\nMore Points:\n");
for (int i=0; i<6; i++)
printf("par[%d]=%f+-%f\n", i, params(i), errors(i));
printf("chisquare=%.15f\n", chisquare);
printf("\nWithout Constant\n");
for (int i=0; i<5; i++)
printf("par[%d]=%f+-%f\n", i, params(i), errors(i));
printf("chisquare=%f\n", chisquare);
printf("\nFixed Constant:\n");
for (i=0; i<6; i++)
printf("par[%d]=%f+-%f\n", i, params(i), errors(i));
printf("chisquare=%.15f\n", chisquare);
delete lf;
}
virtual Double_t GetChisquare()
Get the Chisquare.
virtual void GetErrors(TVectorD &vpar)
Returns parameter errors.
virtual Int_t Eval()
Perform the fit and evaluate the parameters Returns 0 if the fit is ok, 1 if there are errors.
virtual void AssignData(Int_t npoints, Int_t xncols, Double_t *x, Double_t *y, Double_t *e=nullptr)
This function is to use when you already have all the data in arrays and don't want to copy them into...
virtual void GetParameters(TVectorD &vpar)
Returns parameter values.
void FixParameter(Int_t ipar) override
Fixes paramter #ipar at its current value.
virtual void SetFormula(const char *formula)
Additive parts should be separated by "++".
This is the base class for the ROOT Random number generators.
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
- Author
- Anna Kreshuk
Definition in file fitLinear2.C.