Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches

Detailed Description

View in nbviewer Open in SWAN
Write ROOT data with RDataFrame.

This tutorial shows how to write out datasets in ROOT format using RDataFrame.

// A simple helper function to fill a test tree: this makes the example
// stand-alone.
void fill_tree(const char *treeName, const char *fileName)
{
int i(0);
d.Define("b1", [&i]() { return i; })
.Define("b2",
[&i]() {
float j = i * i;
++i;
return j;
})
.Snapshot(treeName, fileName);
}
{
// We prepare an input tree to run on
auto fileName = "df007_snapshot.root";
auto outFileName = "df007_snapshot_output.root";
auto outFileNameAllColumns = "df007_snapshot_output_allColumns.root";
auto treeName = "myTree";
fill_tree(treeName, fileName);
// We read the tree from the file and create a RDataFrame
// ## Select entries
// We now select some entries in the dataset
auto d_cut = d.Filter("b1 % 2 == 0");
// ## Enrich the dataset
// Build some temporary columns: we'll write them out
auto d2 = d_cut.Define("b1_square", "b1 * b1")
.Define("b2_vector",
[](float b2) {
std::vector<float> v;
for (int i = 0; i < 3; i++)
v.push_back(b2 * i);
return v;
},
{"b2"});
// ## Write it to disk in ROOT format
// We now write to disk a new dataset with one of the variables originally
// present in the tree and the new variables.
// The user can explicitly specify the types of the columns as template
// arguments of the Snapshot method, otherwise they will be automatically
// inferred.
d2.Snapshot(treeName, outFileName, {"b1", "b1_square", "b2_vector"});
// Open the new file and list the columns of the tree
auto t = f1.Get<TTree>(treeName);
std::cout << "These are the columns b1, b1_square and b2_vector:" << std::endl;
for (auto branch : *t->GetListOfBranches()) {
std::cout << "Branch: " << branch->GetName() << std::endl;
}
f1.Close();
// We are not forced to write the full set of column names. We can also
// specify a regular expression for that. In case nothing is specified, all
// columns are persistified.
// Open the new file and list the columns of the tree
t = f2.Get<TTree>(treeName);
std::cout << "These are all the columns available to this dataframe:" << std::endl;
for (auto branch : *t->GetListOfBranches()) {
std::cout << "Branch: " << branch->GetName() << std::endl;
}
f2.Close();
// We can also get a fresh RDataFrame out of the snapshot and restart the
// analysis chain from it. The default columns are the ones selected.
// Notice also how we can decide to be more explicit with the types of the
// columns.
auto snapshot_df = d2.Snapshot<int>(treeName, outFileName, {"b1_square"});
auto h = snapshot_df->Histo1D();
auto c = new TCanvas();
h->DrawClone();
return 0;
}
#define d(i)
Definition RSha256.hxx:102
#define c(i)
Definition RSha256.hxx:101
#define h(i)
Definition RSha256.hxx:106
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
The Canvas class.
Definition TCanvas.h:23
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
Definition TFile.h:53
A TTree represents a columnar dataset.
Definition TTree.h:79
TF1 * f1
Definition legend1.C:11
Date
April 2017
Author
Danilo Piparo (CERN)

Definition in file df007_snapshot.C.