TMVA::RSofieReader class for reading external Machine Learning models in ONNX files, Keras .h5 or .keras files or PyTorch .pt files and performing the inference using SOFIE It is reccomended to use ONNX if possible since there is a larger support for model operators.
Definition at line 45 of file RSofieReader.hxx.
Classes | |
| struct | CustomOperatorData |
Public Member Functions | |
| RSofieReader () | |
| Dummy constructor which needs model loading afterwards. | |
| RSofieReader (const std::string &path, std::vector< std::vector< size_t > > inputShapes={}, int verbose=0) | |
| Create TMVA model from ONNX file print level can be 0 (minimal) 1 with info , 2 with all ONNX parsing info. | |
| void | AddCustomOperator (const std::string &opName, const std::string &inputNames, const std::string &outputNames, const std::string &outputShapes, const std::string &fileName) |
| std::vector< float > | Compute (const std::vector< float > &x) |
| RTensor< float > | Compute (RTensor< float > &x) |
| Compute model prediction on input RTensor The shape of the input tensor should be {nevents, nfeatures} and the return shape will be {nevents, noutputs} support for now only a single input. | |
| template<typename... T> | |
| std::vector< float > | Compute (T... x) |
| Compute model prediction on vector. | |
| std::vector< float > | DoCompute (const std::vector< float > &x1) |
| std::vector< float > | DoCompute (const std::vector< float > &x1, const std::vector< float > &x2) |
| std::vector< float > | DoCompute (const std::vector< float > &x1, const std::vector< float > &x2, const std::vector< float > &x3) |
| void | Load (const std::string &path, std::vector< std::vector< size_t > > inputShapes={}, int verbose=0) |
Private Attributes | |
| std::vector< CustomOperatorData > | fCustomOperators |
| void * | fFuncPtr = nullptr |
| bool | fInitialized = false |
| int | fNInputs = 0 |
| void * | fSessionPtr = nullptr |
#include <TMVA/RSofieReader.hxx>
|
inline |
Dummy constructor which needs model loading afterwards.
Definition at line 50 of file RSofieReader.hxx.
|
inline |
Create TMVA model from ONNX file print level can be 0 (minimal) 1 with info , 2 with all ONNX parsing info.
Definition at line 53 of file RSofieReader.hxx.
|
inline |
Definition at line 280 of file RSofieReader.hxx.
|
inline |
Definition at line 327 of file RSofieReader.hxx.
Compute model prediction on input RTensor The shape of the input tensor should be {nevents, nfeatures} and the return shape will be {nevents, noutputs} support for now only a single input.
Definition at line 342 of file RSofieReader.hxx.
|
inline |
Compute model prediction on vector.
Definition at line 314 of file RSofieReader.hxx.
|
inline |
Definition at line 287 of file RSofieReader.hxx.
|
inline |
Definition at line 295 of file RSofieReader.hxx.
|
inline |
Definition at line 303 of file RSofieReader.hxx.
|
inline |
Definition at line 58 of file RSofieReader.hxx.
|
private |
Definition at line 378 of file RSofieReader.hxx.
|
private |
Definition at line 368 of file RSofieReader.hxx.
Definition at line 365 of file RSofieReader.hxx.
|
private |
Definition at line 366 of file RSofieReader.hxx.
|
private |
Definition at line 367 of file RSofieReader.hxx.