Demonstrate Z_Bi = Z_Gamma
[#1] INFO:NumericIntegration -- RooRealIntegral::init([py_X_prior_b_X_px]_Norm[b]_denominator_Int[b]) using numeric integrator RooIntegrator1D to calculate Int(b)
[#1] INFO:NumericIntegration -- RooRealIntegral::init([py_X_prior_b]_Norm[b]_denominator_Int[b]) using numeric integrator RooIntegrator1D to calculate Int(b)
[#1] INFO:NumericIntegration -- RooRealIntegral::init([[py_X_prior_b]_Norm[b]_X_px_NORM[x]]_Int[b]) using numeric integrator RooIntegrator1D to calculate Int(b)
[#1] INFO:NumericIntegration -- RooRealIntegral::init([py_X_prior_b]_Norm[b]_denominator_Int[b]) using numeric integrator RooIntegrator1D to calculate Int(b)
[#1] INFO:NumericIntegration -- RooRealIntegral::init([py_X_prior_b]_Norm[b]_denominator_Int[b]) using numeric integrator RooIntegrator1D to calculate Int(b)
[#1] INFO:NumericIntegration -- RooRealIntegral::init([py_X_prior_b]_Norm[b]_denominator_Int[b]) using numeric integrator RooIntegrator1D to calculate Int(b)
[#1] INFO:NumericIntegration -- RooRealIntegral::init([[py_X_prior_b]_Norm[b]_X_px_cdf_NORM[x_prime]]_Int[b]) using numeric integrator RooIntegrator1D to calculate Int(b)
[#1] INFO:NumericIntegration -- RooRealIntegral::init([py_X_prior_b]_Norm[b]_denominator_Int[b]) using numeric integrator RooIntegrator1D to calculate Int(b)
[#1] INFO:NumericIntegration -- RooRealIntegral::init([[py_X_prior_b]_Norm[b]_X_px_cdf_Int[x_prime|CDF]_Norm[x_prime]]_Int[b|CDF]) using numeric integrator RooIntegrator1D to calculate Int(b)
[#1] INFO:NumericIntegration -- RooRealIntegral::init([py_X_prior_b]_Norm[b]_denominator_Int[b]) using numeric integrator RooIntegrator1D to calculate Int(b)
Hybrid p-value = 0.9992259057034769
Z_Gamma Significance = 3.165495870670026
Z_Bi significance estimation: 3.1080438957471137
import ROOT
w1.factory(
"Poisson::px(x[150,0,500],sum::splusb(s[0,0,100],b[100,0,300]))")
w1.factory(
"Poisson::py(y[100,0,500],prod::taub(tau[1.],b))")
w1.factory(
"PROJ::averagedModel(PROD::foo(px|b,py,prior_b),b)")
frame = w1["x"].frame()
w1["averagedModel"].plotOn(frame)
w1["px"].plotOn(frame, LineColor="kRed")
w1["y"].setVal(100)
w1["x"].setVal(150)
print("Z_Bi significance estimation: ", Z_Bi)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
- Date
- July 2022
- Authors
- Artem Busorgin, Kyle Cranmer and Wouter Verkerke (C++ version)
Definition in file Zbi_Zgamma.py.