Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
VariableMetricBuilder.cxx
Go to the documentation of this file.
1// @(#)root/minuit2:$Id$
2// Authors: M. Winkler, F. James, L. Moneta, A. Zsenei 2003-2005
3
4/**********************************************************************
5 * *
6 * Copyright (c) 2005 LCG ROOT Math team, CERN/PH-SFT *
7 * *
8 **********************************************************************/
9
17#include "Minuit2/MinimumSeed.h"
18#include "Minuit2/MnFcn.h"
20#include "Minuit2/MnPosDef.h"
22#include "Minuit2/MnStrategy.h"
23#include "Minuit2/MnHesse.h"
24#include "Minuit2/MnPrint.h"
25
26#include "Math/Util.h"
27
28#include <cmath>
29#include <cassert>
30
31namespace ROOT {
32
33namespace Minuit2 {
34
35void VariableMetricBuilder::AddResult(std::vector<MinimumState> &result, const MinimumState &state) const
36{
37 // // if (!store) store = StorageLevel();
38 // // store |= (result.size() == 0);
39 // if (store)
40 result.push_back(state);
41 // else {
42 // result.back() = state;
43 // }
44 if (TraceIter())
45 TraceIteration(result.size() - 1, result.back());
46 else {
47 MnPrint print("VariableMetricBuilder", PrintLevel());
48 print.Info(MnPrint::Oneline(result.back(), result.size() - 1));
49 }
50}
51
53 const MnStrategy &strategy, unsigned int maxfcn, double edmval) const
54{
55 MnPrint print("VariableMetricBuilder", PrintLevel());
56
57 // top level function to find minimum from a given initial seed
58 // iterate on a minimum search in case of first attempt is not successful
59
60 // to be consistent with F77 Minuit
61 // in Minuit2 edm is correct and is ~ a factor of 2 smaller than F77Minuit
62 // There are also a check for convergence if (edm < 0.1 edmval for exiting the loop)
63 // LM: change factor to 2E-3 to be consistent with F77Minuit
64 edmval *= 0.002;
65
66 // set global printlevel to the local one so all calls to MN_INFO_MSG can be controlled in the same way
67 // at exit of this function the BuilderPrintLevelConf object is destructed and automatically the
68 // previous level will be restored
69
70 // double edm = Estimator().Estimate(seed.Gradient(), seed.Error());
71 double edm = seed.State().Edm();
72
73 FunctionMinimum min(seed, fcn.Up());
74
75 if (seed.Parameters().Vec().size() == 0) {
76 print.Warn("No free parameters.");
77 return min;
78 }
79
80 if (!seed.IsValid()) {
81 print.Error("Minimum seed invalid.");
82 return min;
83 }
84
85 if (edm < 0.) {
86 print.Error("Initial matrix not pos.def.");
87
88 // assert(!seed.Error().IsPosDef());
89 return min;
90 }
91
92 std::vector<MinimumState> result;
93 result.reserve(StorageLevel() > 0 ? 10 : 2);
94
95 // do actual iterations
96 print.Info("Start iterating until Edm is <", edmval, "with call limit =", maxfcn);
97
98 // print time after returning
99 ROOT::Math::Util::TimingScope timingScope([&print](std::string const &s) { print.Info(s); }, "Stop iterating after");
100
101 AddResult(result, seed.State());
102
103 // try first with a maxfxn = 80% of maxfcn
104 int maxfcn_eff = maxfcn;
105 int ipass = 0;
106 bool iterate = false;
107
108 do {
109
110 iterate = false;
111
112 print.Debug(ipass > 0 ? "Continue" : "Start", "iterating...");
113
114 min = Minimum(fcn, gc, seed, result, maxfcn_eff, edmval);
115
116 // if max function call reached exits
117 if (min.HasReachedCallLimit()) {
118 print.Warn("FunctionMinimum is invalid, reached function call limit");
119 return min;
120 }
121
122 // second time check for validity of function Minimum
123 if (ipass > 0) {
124 if (!min.IsValid()) {
125 print.Warn("FunctionMinimum is invalid after second try");
126 return min;
127 }
128 }
129
130 // resulting edm of minimization
131 edm = result.back().Edm();
132 // need to correct again for Dcovar: edm *= (1. + 3. * e.Dcovar()) ???
133
134 if ((strategy.Strategy() >= 2) || (strategy.Strategy() == 1 && min.Error().Dcovar() > 0.05)) {
135
136 print.Debug("MnMigrad will verify convergence and Error matrix; dcov =", min.Error().Dcovar());
137
139 strat.SetHessianForcePosDef(1); // ensure no matter what strategy is used, we force the result positive-definite if required
140 MinimumState st = MnHesse(strat)(fcn, min.State(), min.Seed().Trafo(), maxfcn);
141
142 print.Info("After Hessian");
143
145
146 if (!st.IsValid()) {
147 print.Warn("Invalid Hessian - exit the minimization");
148 break;
149 }
150
151 // check new edm
152 edm = st.Edm();
153
154 print.Debug("New Edm", edm, "Requested", edmval);
155
156 if (edm > edmval) {
157 // be careful with machine precision and avoid too small edm
158 double machineLimit = std::fabs(seed.Precision().Eps2() * result.back().Fval());
159 if (edm >= machineLimit) {
160 iterate = true;
161
162 print.Info("Tolerance not sufficient, continue minimization; "
163 "Edm",
164 edm, "Required", edmval);
165 } else {
166 print.Warn("Reached machine accuracy limit; Edm", edm, "is smaller than machine limit", machineLimit,
167 "while", edmval, "was requested");
168 }
169 }
170 }
171
172 // end loop on iterations
173 // ? need a maximum here (or max of function calls is enough ? )
174 // continnue iteration (re-calculate function Minimum if edm IS NOT sufficient)
175 // no need to check that hesse calculation is done (if isnot done edm is OK anyway)
176 // count the pass to exit second time when function Minimum is invalid
177 // increase by 20% maxfcn for doing some more tests
178 if (ipass == 0)
179 maxfcn_eff = int(maxfcn * 1.3);
180 ipass++;
181 } while (iterate);
182
183 // Add latest state (Hessian calculation)
184 const MinimumState &latest = result.back();
185
186 // check edm (add a factor of 10 in tolerance )
187 if (edm > 10 * edmval) {
189 print.Warn("No convergence; Edm", edm, "is above tolerance", 10 * edmval);
190 } else if (latest.Error().HasReachedCallLimit()) {
191 // communicate to user that call limit was reached in MnHesse
193 } else if (latest.Error().IsAvailable()) {
194 // check if minimum had edm above max before
195 if (min.IsAboveMaxEdm())
196 print.Info("Edm has been re-computed after Hesse; Edm", edm, "is now within tolerance");
197 min.Add(latest);
198 }
199
200 print.Debug("Minimum found", min);
201
202 return min;
203}
204
206 std::vector<MinimumState> &result, unsigned int maxfcn,
207 double edmval) const
208{
209 // function performing the minimum searches using the Variable Metric algorithm (MIGRAD)
210 // perform first a line search in the - Vg direction and then update using the Davidon formula (Davidon Error
211 // updator) stop when edm reached is less than required (edmval)
212
213 // after the modification when I iterate on this functions, so it can be called many times,
214 // the seed is used here only to get precision and construct the returned FunctionMinimum object
215
216 MnPrint print("VariableMetricBuilder", PrintLevel());
217
218 const MnMachinePrecision &prec = seed.Precision();
219
220 // result.push_back(MinimumState(seed.Parameters(), seed.Error(), seed.Gradient(), edm, fcn.NumOfCalls()));
221 const MinimumState &initialState = result.back();
222
223 double edm = initialState.Edm();
224
225 print.Debug("Initial State:", "\n Parameter:", initialState.Vec(), "\n Gradient:", initialState.Gradient().Vec(),
226 "\n InvHessian:", initialState.Error().InvHessian(), "\n Edm:", initialState.Edm());
227
228 // iterate until edm is small enough or max # of iterations reached
229 edm *= (1. + 3. * initialState.Error().Dcovar());
231 MnAlgebraicVector step(initialState.Gradient().Vec().size());
232 // keep also prevStep
233 MnAlgebraicVector prevStep(initialState.Gradient().Vec().size());
234
235 MinimumState s0 = result.back();
236
237 do {
238
239 // MinimumState s0 = result.back();
240
241 step = -1. * s0.Error().InvHessian() * s0.Gradient().Vec();
242
243 print.Debug("Iteration", result.size(), "Fval", s0.Fval(), "numOfCall", fcn.NumOfCalls(),
244 "\n Internal parameters", s0.Vec(), "\n Newton step", step);
245
246 // check if derivatives are not zero
247 if (inner_product(s0.Gradient().Vec(), s0.Gradient().Vec()) <= 0) {
248 print.Debug("all derivatives are zero - return current status");
249 break;
250 }
251
252 // gdel = s^T * g = -g^T H g (since s = - Hg) so it must be negative
253 double gdel = inner_product(step, s0.Gradient().Grad());
254
255 if (gdel > 0.) {
256 print.Warn("Matrix not pos.def, gdel =", gdel, "> 0");
257
259 s0 = psdf(s0, prec);
260 step = -1. * s0.Error().InvHessian() * s0.Gradient().Vec();
261 // #ifdef DEBUG
262 // std::cout << "After MnPosdef - Error " << s0.Error().InvHessian() << " Gradient " <<
263 // s0.Gradient().Vec() << " step " << step << std::endl;
264 // #endif
265 gdel = inner_product(step, s0.Gradient().Grad());
266
267 print.Warn("gdel =", gdel);
268
269 if (gdel > 0.) {
271
272 return FunctionMinimum(seed, result, fcn.Up());
273 }
274 }
275
276 MnParabolaPoint pp = lsearch(fcn, s0.Parameters(), step, gdel, prec);
277
278 // <= needed for case 0 <= 0
279 if (std::fabs(pp.Y() - s0.Fval()) <= std::fabs(s0.Fval()) * prec.Eps()) {
280
281 print.Warn("No improvement in line search");
282
283 // no improvement exit (is it really needed LM ? in vers. 1.22 tried alternative )
284 // add new state when only fcn changes
285 if (result.size() <= 1)
286 AddResult(result, MinimumState(s0.Parameters(), s0.Error(), s0.Gradient(), s0.Edm(), fcn.NumOfCalls()));
287 else
288 // no need to re-store the state
289 AddResult(result, MinimumState(pp.Y(), s0.Edm(), fcn.NumOfCalls()));
290
291 break;
292 }
293
294 print.Debug("Result after line search :", "\n x =", pp.X(), "\n Old Fval =", s0.Fval(),
295 "\n New Fval =", pp.Y(), "\n NFcalls =", fcn.NumOfCalls());
296
297 MinimumParameters p(s0.Vec() + pp.X() * step, pp.Y());
298
299 FunctionGradient g = gc(p, s0.Gradient());
300
301 edm = Estimator().Estimate(g, s0.Error());
302
303 if (std::isnan(edm)) {
304 print.Warn("Edm is NaN; stop iterations");
306 return FunctionMinimum(seed, result, fcn.Up());
307 }
308
309 if (edm < 0.) {
310 print.Warn("Matrix not pos.def., try to make pos.def.");
311
313 s0 = psdf(s0, prec);
314 edm = Estimator().Estimate(g, s0.Error());
315 if (edm < 0.) {
316 print.Warn("Matrix still not pos.def.; stop iterations");
317
319
320 return FunctionMinimum(seed, result, fcn.Up());
321 }
322 }
323 MinimumError e = ErrorUpdator().Update(s0, p, g);
324
325 // avoid print Hessian that will invert the matrix
326 print.Debug("Updated new point:", "\n Parameter:", p.Vec(), "\n Gradient:", g.Vec(),
327 "\n InvHessian:", e.Matrix(), "\n Edm:", edm);
328
329 // update the state
330 s0 = MinimumState(p, e, g, edm, fcn.NumOfCalls());
331 if (StorageLevel() || result.size() <= 1)
333 else
334 // use a reduced state for not-final iterations
335 AddResult(result, MinimumState(p.Fval(), edm, fcn.NumOfCalls()));
336
337 // correct edm
338 edm *= (1. + 3. * e.Dcovar());
339
340 print.Debug("Dcovar =", e.Dcovar(), "\tCorrected edm =", edm);
341
342 } while (edm > edmval && fcn.NumOfCalls() < maxfcn); // end of iteration loop
343
344 // save last result in case of no complete final states
345 // when the result is filled above (reduced storage) the resulting state will not be valid
346 // since they will not have parameter values and error
347 // the line above will fill as last element a valid state
348 if (!result.back().IsValid())
349 result.back() = s0;
350
351 if (fcn.NumOfCalls() >= maxfcn) {
352 print.Warn("Call limit exceeded");
354 }
355
356 if (edm > edmval) {
357 if (edm < 10 * edmval) {
358 print.Info("Edm is close to limit - return current minimum");
359 return FunctionMinimum(seed, result, fcn.Up());
360 } else if (edm < std::fabs(prec.Eps2() * result.back().Fval())) {
361 print.Warn("Edm is limited by Machine accuracy - return current minimum");
362 return FunctionMinimum(seed, result, fcn.Up());
363 } else {
364 print.Warn("Iterations finish without convergence; Edm", edm, "Requested", edmval);
365
367 }
368 }
369 // std::cout<<"result.back().Error().Dcovar()= "<<result.back().Error().Dcovar()<<std::endl;
370
371 print.Debug("Exiting successfully;", "Ncalls", fcn.NumOfCalls(), "FCN", result.back().Fval(), "Edm", edm,
372 "Requested", edmval);
373
374 return FunctionMinimum(seed, result, fcn.Up());
375}
376
377} // namespace Minuit2
378
379} // namespace ROOT
#define g(i)
Definition RSha256.hxx:105
#define s0(x)
Definition RSha256.hxx:90
#define e(i)
Definition RSha256.hxx:103
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void gc
class holding the full result of the minimization; both internal and external (MnUserParameterState) ...
interface class for gradient calculators
void TraceIteration(int iter, const MinimumState &state) const
MinimumError keeps the inv.
const MinimumParameters & Parameters() const
Definition MinimumSeed.h:30
const MnMachinePrecision & Precision() const
Definition MinimumSeed.h:34
const MinimumState & State() const
Definition MinimumSeed.h:29
MinimumState keeps the information (position, Gradient, 2nd deriv, etc) after one minimization step (...
Wrapper class to FCNBase interface used internally by Minuit.
Definition MnFcn.h:30
API class for calculating the numerical covariance matrix (== 2x Inverse Hessian == 2x Inverse 2nd de...
Definition MnHesse.h:41
Implements a 1-dimensional minimization along a given direction (i.e.
Sets the relative floating point (double) arithmetic precision.
double Y() const
Accessor to the y (second) coordinate.
double X() const
Accessor to the x (first) coordinate.
Force the covariance matrix to be positive defined by adding extra terms in the diagonal.
Definition MnPosDef.h:25
void Debug(const Ts &... args)
Definition MnPrint.h:135
void Error(const Ts &... args)
Definition MnPrint.h:117
void Info(const Ts &... args)
Definition MnPrint.h:129
void Warn(const Ts &... args)
Definition MnPrint.h:123
API class for defining four levels of strategies: low (0), medium (1), high (2), very high (>=3); act...
Definition MnStrategy.h:27
void AddResult(std::vector< MinimumState > &result, const MinimumState &state) const
FunctionMinimum Minimum(const MnFcn &, const GradientCalculator &, const MinimumSeed &, const MnStrategy &, unsigned int, double) const override
const VariableMetricEDMEstimator & Estimator() const
const MinimumErrorUpdator & ErrorUpdator() const
int iterate(rng_state_t *X)
Definition mixmax.icc:34
double inner_product(const LAVector &, const LAVector &)
Definition MnMatrix.cxx:316
tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tb...