This macro provides a simple example for:
- creating a model with Pytorch and export to ONNX
- parsing the ONNX file with SOFIE and generate C++ code
- compiling the model using ROOT Cling
- run the code and optionally compare with ONNXRuntime
import torch
import ROOT
import numpy as np
import inspect
)
y_pred = model(x)
modelFile = modelName + ".onnx"
model(dummy_x)
return {
}
input_names=["input"],
output_names=["output"],
external_data=False,
dynamo=True
)
print("calling torch.onnx.export with parameters",kwargs)
try:
print("model exported to ONNX as",modelFile)
return modelFile
except TypeError:
print("Skip tutorial execution")
if (verbose):
print("0weight",data)
print("2weight",data)
if (verbose) :
print("Generated model header file ",modelCode)
return modelCode
modelName = "LinearModel"
sofie =
getattr(ROOT,
'TMVA_SOFIE_' + modelName)
print("\n************************************************************")
print("Running inference with SOFIE ")
print("\ninput to model is ",x)
print("-> output using SOFIE = ", y_sofie)
try:
import onnxruntime as ort
print("Running inference with ONNXRuntime ")
y_ort = outputs[0]
print("-> output using ORT =", y_ort)
testFailed = abs(y_sofie-y_ort) > 0.01
raiseError(
'Result is different between SOFIE and ONNXRT')
else :
print("OK")
except ImportError:
print("Missing ONNXRuntime: skipping comparison test")
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
calling torch.onnx.export with parameters {'input_names': ['input'], 'output_names': ['output'], 'external_data': False, 'dynamo': True}
[torch.onnx] Obtain model graph for `Sequential([...]` with `torch.export.export(..., strict=False)`...
[torch.onnx] Obtain model graph for `Sequential([...]` with `torch.export.export(..., strict=False)`... ✅
[torch.onnx] Run decomposition...
[torch.onnx] Run decomposition... ✅
[torch.onnx] Translate the graph into ONNX...
[torch.onnx] Translate the graph into ONNX... ✅
model exported to ONNX as LinearModel.onnx
Generated model header file LinearModel.hxx
************************************************************
Running inference with SOFIE
input to model is [[-0.43541127 -0.6999505 -0.02768864 0.23811446 0.25726634 -1.085633
0.41872853 0.8219983 -0.13312088 0.8314049 1.7008935 0.51832324
0.39762613 0.06118078 0.46557882 1.3935466 -1.0586125 -0.79214805
-0.7751602 -0.7748113 0.15902355 1.4220787 -0.7163378 -2.077027
1.173115 0.49559772 0.01957363 0.87363017 -1.1822985 0.1161613
-0.35567507 0.16426486]]
-> output using SOFIE = [0.52619046 0.47380957]
Missing ONNXRuntime: skipping comparison test
- Author
- Lorenzo Moneta
Definition in file TMVA_SOFIE_ONNX.py.