Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
ROperator_Softmax.hxx
Go to the documentation of this file.
1#ifndef TMVA_SOFIE_ROPERATOR_Softmax
2#define TMVA_SOFIE_ROPERATOR_Softmax
3
5#include "TMVA/ROperator.hxx"
6#include "TMVA/RModel.hxx"
7
8#include <sstream>
9
10namespace TMVA {
11namespace Experimental {
12namespace SOFIE {
13
14template <typename T>
16
17private:
18 int64_t fAttrAxis;
19
20 std::string fNX;
21 std::string fNY;
22 std::vector<Dim> fShape;
23
24 std::string fType;
25
26public:
28 ROperator_Softmax(int64_t attr_axis, std::string nameX, std::string nameY)
29 : fAttrAxis(attr_axis), fNX(UTILITY::Clean_name(nameX)), fNY(UTILITY::Clean_name(nameY))
30 {
33 }
34
35 std::vector<ETensorType> TypeInference(std::vector<ETensorType> input) override { return input; }
36
37 std::vector<std::vector<size_t>> ShapeInference(std::vector<std::vector<size_t>> input) override {
38 auto ret = input; // suggest copy to compiler
39 return ret;
40 }
41
42 void Initialize(RModel& model) override {
43 if (model.CheckIfTensorAlreadyExist(fNX) ==
44 false) { // input must be a graph input, or already initialized intermediate tensor
45 throw std::runtime_error("TMVA SOFIE Softmax Op Input Tensor is not found in model");
46 }
50 if (model.Verbose()) {
51 std::cout << "Softmax -> " << fNY << " " << ConvertShapeToString(fShape) << std::endl;
52 }
53 }
54
55 std::string Generate(std::string OpName) override {
56 OpName = "op_" + OpName;
57 if (fShape.empty()) {
58 throw std::runtime_error("TMVA SOFIE Operator Softmax called to Generate without being initialized first");
59 }
60 std::stringstream out;
61 size_t size = fShape.size();
63 size_t axis = fAttrAxis < 0 ? size + fAttrAxis : fAttrAxis;
64
65 // Check if this is the special case where memory is contiguous.
66 if (axis == size - 1) {
67 std::string axis_size = fShape[axis].GetVal();
68 std::string num_rows;
70 num_rows = std::to_string(std::stoul(length_str) / std::stoul(axis_size));
71 } else {
72 num_rows = "(" + length_str + ") / (" + axis_size + ")";
73 }
74
75 out << "\n" << SP << "//------ SOFTMAX - " << size << " " << length_str << " " << axis << "\n";
76 out << SP << "for (int i = 0; i < " << num_rows << "; ++i) {\n";
77 out << SP << SP << "size_t offset = i * " << axis_size << ";\n";
78 out << SP << SP << fType << " const * x_ptr = &tensor_" << fNX << "[offset];\n";
79 out << SP << SP << fType << " * y_ptr = &tensor_" << fNY << "[offset];\n";
80
81 out << SP << SP << fType << " vmax = x_ptr[0];\n";
82 out << SP << SP << "for (int j = 1; j < " << axis_size << "; ++j) {\n";
83 out << SP << SP << SP << "if (x_ptr[j] > vmax) vmax = x_ptr[j];\n";
84 out << SP << SP << "}\n";
85
86 out << SP << SP << fType << " sum = 0.0;\n";
87 out << SP << SP << "for (int j = 0; j < " << axis_size << "; ++j) {\n";
88 out << SP << SP << SP << "y_ptr[j] = std::exp(x_ptr[j] - vmax);\n";
89 out << SP << SP << SP << "sum += y_ptr[j];\n";
90 out << SP << SP << "}\n";
91
92 out << SP << SP << fType << " inv_sum = 1.0f / sum;\n";
93 out << SP << SP << "for (int j = 0; j < " << axis_size << "; ++j) {\n";
94 out << SP << SP << SP << "y_ptr[j] *= inv_sum;\n";
95 out << SP << SP << "}\n";
96 out << SP << "}\n";
97
98 } else {
100 size_t k = 0;
101 std::vector<std::string> l(size);
102 for (size_t i = 0; i < size; i++) {
103 if (i != axis) {
104 for (size_t j = 0; j < k; j++) out << SP;
105 l[i] = std::string("i") + std::to_string(i);
106 out << "for (int " << l[i] << " = 0; " << l[i] << " < " << fShape[i] << "; " << l[i] << "++) {\n";
107 k++;
108 }
109 }
110 for (size_t j = 0; j < size-1; j++) out << SP;
111 out << fType << " sum = 0.;\n";
112 for (size_t j = 0; j < size-1; j++) out << SP;
113 out << "size_t index = ";
114 bool first = true;
115 for (size_t i = 0; i < size; i++) {
116 if (i == axis) continue;
117 if (!first) out << " + ";
118 if (stride[i].GetVal() != "1")
119 out << stride[i] << "*";
120 out << l[i];
121 first = false;
122 }
123 out << ";\n";
124 // find maximum looping along reduced axis
125 for (size_t j = 0; j < size-1; j++) out << SP;
126 out << fType << " vmax = tensor_" << fNX << "[index];\n";
127 for (size_t j = 0; j < size-1; j++) out << SP;
128 out << "for (int i = 1; i < " << fShape[axis] << "; i++) {\n";
129 for (size_t j = 0; j < size; j++) out << SP;
130 out << fType << " x = tensor_" << fNX << "[index + i";
131 if (stride[axis].GetVal() != "1") out << "*(" << stride[axis] << ")";
132 out << "];\n";
133 for (size_t j = 0; j < size; j++) out << SP;
134 out << "if (x > vmax) vmax = x;\n";
135 for (size_t j = 0; j < size-1; j++) out << SP;
136 out << "}\n";
137 // compute softmax
138 for (size_t j = 0; j < size-1; j++) out << SP;
139 out << "for (int i = 0; i < " << fShape[axis] << "; i++) {\n";
140 for (size_t j = 0; j < size; j++) out << SP;
141 out << "size_t id = index + i";
142 if (stride[axis].GetVal() != "1") out << "*(" << stride[axis] << ")";
143 out << ";\n";
144 for (size_t j = 0; j < size; j++) out << SP;
145 out << "tensor_" << fNY << "[id] = std::exp(tensor_" << fNX << "[id] - vmax);\n";
146 for (size_t j = 0; j < size; j++) out << SP;
147 out << "sum += tensor_" << fNY << "[id];\n";
148 for (size_t j = 0; j < size-1; j++) out << SP;
149 out << "}\n";
150 // normalize
151 for (size_t j = 0; j < size-1; j++) out << SP;
152 out << "for (int i = 0; i < " << fShape[axis] << "; i++) {\n";
153 for (size_t j = 0; j < size; j++) out << SP;
154 out << "tensor_" << fNY << "[index + i";
155 if (stride[axis].GetVal() != "1") out << "*(" << stride[axis] << ")";
156 out << "] /= sum;\n";
157 for (size_t j = 0; j < size-1; j++) out << SP;
158 out << "}\n";
159 //end loops
160 for (int i = static_cast<int>(k) - 1; i >= 0; i--) {
161 for (int j = 0; j < i; j++) out << SP;
162 out << "}\n";
163 }
164 }
165 return out.str();
166 }
167 std::vector<std::string> GetStdLibs() override { return { std::string("cmath") }; }
168};
169
170} // namespace SOFIE
171} // namespace Experimental
172} // namespace TMVA
173
174#endif // TMVA_SOFIE_ROPERATOR_Softmax
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
std::vector< Dim > GetDimTensorShape(const std::string &name) const
Definition RModel.cxx:65
void AddIntermediateTensor(std::string tensor_name, ETensorType type, std::vector< Dim > dim_shape)
Definition RModel.cxx:247
bool CheckIfTensorAlreadyExist(std::string tensor_name)
Definition RModel.cxx:122
ETensorType GetTensorType(std::string name) const
Definition RModel.cxx:90
std::vector< ETensorType > TypeInference(std::vector< ETensorType > input) override
std::string Generate(std::string OpName) override
ROperator_Softmax(int64_t attr_axis, std::string nameX, std::string nameY)
std::vector< std::vector< size_t > > ShapeInference(std::vector< std::vector< size_t > > input) override
std::vector< std::string > GetStdLibs() override
std::vector< std::string_view > fInputTensorNames
Definition ROperator.hxx:47
const std::string SP
space used to correctly indent the generated C++ code
Definition ROperator.hxx:42
std::vector< std::string_view > fOutputTensorNames
Definition ROperator.hxx:48
std::vector< size_t > ComputeStrideFromShape(const std::vector< size_t > &shape)
compute stride of a tensor given its shape (assume layout is row-major)
std::string ConvertTypeToString(ETensorType type)
std::string ConvertDimShapeToLength(const std::vector< Dim > &shape)
std::string ConvertShapeToString(const std::vector< size_t > &shape)
bool IsInteger(const std::string &s)
create variable transformations
TLine l
Definition textangle.C:4