1#ifndef TMVA_SOFIE_ROPERATOR_POOL
2#define TMVA_SOFIE_ROPERATOR_POOL
16namespace Experimental {
77 if(std::is_same<T, float>::value) {
81 std::runtime_error(
"TMVA SOFIE Encountered unsupported type parsing a Pool operator");
98 if (
input.size() != 1 ) {
99 throw std::runtime_error(
"TMVA SOFIE" +
Name() +
"Op Shape inference need 1 input tensor");
102 throw std::runtime_error(
"TMVA SOFIE" +
Name() +
"Op Shape inference only accept tensor with at least 3 dimensions");
106 throw std::runtime_error(
"TMVA SOFIE" +
Name() +
"Op : tensors with dimension " + std::to_string(
input[0].
size()) +
" are not yet supported");
111 std::runtime_error(
"TMVA SOFIE Pool Op Shape inference - invalid inputs ");
119 size_t i1 = (
fDim > 1) ? ((
fDim > 2) ? 3 : 2) : 1;
120 size_t i2 = (
fDim > 2) ? 4 : 3;
161 std::runtime_error(
"TMVA SOFIE" +
Name() +
"Op invalid Autopad value : " +
fAttrAutopad);
180 size_t batch_size =
input[0][0];
209 std::runtime_error(
"TMVA SOFIE Pool op Input Tensor " +
fNX +
" is not found in model");
215 std::runtime_error(
"TMVA SOFIE Pool Op input data tensor" +
fNX +
" is not of 3,4 or 5 dimensions");
241 std::stringstream out;
248 std::stringstream out;
251 out <<
"std::vector<" <<
fType <<
"> fVec_" <<
opName <<
"_xpad = std::vector<" <<
fType <<
">("
255 out <<
"std::vector<" <<
fType <<
"> fVec_" <<
opName <<
"_xpad = std::vector<" <<
fType <<
">("
260 out <<
"std::vector<" <<
fType <<
"> fVec_" <<
opName <<
"_xpad = std::vector<" <<
fType <<
">("
272 throw std::runtime_error(
"TMVA SOFIE Pool Op called to Generate without being initialized first");
275 std::stringstream out;
277 out <<
"\n//---- operator " <<
Name() <<
" " <<
OpName <<
"\n";
305 out <<
SP <<
"constexpr int hsize = " <<
fShapeX[2] <<
";\n";
306 out <<
SP <<
"constexpr int hmin = " <<
hmin <<
";\n";
307 out <<
SP <<
"constexpr int hmax = " <<
hmax <<
";\n";
311 out <<
SP <<
"constexpr int wsize = " <<
wsize <<
";\n";
312 out <<
SP <<
"constexpr int wmin = " <<
wmin <<
";\n";
313 out <<
SP <<
"constexpr int wmax = " <<
wmax <<
";\n";
317 out <<
SP <<
"constexpr int dsize = " <<
dsize <<
";\n";
318 out <<
SP <<
"constexpr int dwsize = " <<
dsize*
wsize <<
";\n";
319 out <<
SP <<
"constexpr int dmin = " <<
dmin <<
";\n";
320 out <<
SP <<
"constexpr int dmax = " <<
dmax <<
";\n";
333 out <<
SP <<
"size_t outIndex = 0;\n";
334 out <<
SP <<
"for (size_t n = 0; n < " <<
fShapeX[0]*
fShapeX[1] <<
"; n++) {\n";
335 out <<
SP <<
SP <<
"size_t inputOffset = n*" <<
fShapeX[2] <<
";\n";
336 out <<
SP <<
SP <<
"for (int i = hmin; i < hmax; i+=" <<
fAttrStrides[0] <<
") {\n";
339 out <<
SP <<
SP <<
SP <<
SP <<
"float value = -INFINITY;\n";
341 out <<
SP <<
SP <<
SP <<
SP <<
"float value = 0;\n";
343 out <<
SP <<
SP <<
SP <<
SP <<
"int nsum = 0;\n";
345 out <<
SP <<
SP <<
SP <<
SP <<
"constexpr int nsum = kh;\n";
348 out <<
SP <<
SP <<
SP <<
SP <<
"for (int l = i; l < i + kh; l++) {\n";
349 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
"if (l < 0 || l >= hsize) continue;\n";
350 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"int index = inputOffset + l;\n";
352 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"auto xval = tensor_" <<
fNX <<
"[index];\n";
353 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"if (xval > value) value = xval;\n";
357 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"value += tensor_" <<
fNX <<
"[index];\n";
365 out <<
SP <<
SP <<
SP <<
SP <<
"value /= float(nsum);\n";
368 out <<
SP <<
SP <<
SP <<
SP <<
"tensor_" <<
fNY <<
"[outIndex++] = value;\n";
370 out <<
SP <<
SP <<
"}\n";
375 out <<
SP <<
"size_t outIndex = 0;\n";
376 out <<
SP <<
"for (size_t n = 0; n < " <<
fShapeX[0]*
fShapeX[1] <<
"; n++) {\n";
378 out <<
SP <<
SP <<
"for (int i = hmin; i < hmax; i+=" <<
fAttrStrides[0] <<
") {\n";
379 out <<
SP <<
SP <<
SP <<
"for (int j = wmin; j < wmax; j+=" <<
fAttrStrides[1] <<
") {\n";
382 out <<
SP <<
SP <<
SP <<
SP <<
"float value = -INFINITY;\n";
384 out <<
SP <<
SP <<
SP <<
SP <<
"float value = 0;\n";
386 out <<
SP <<
SP <<
SP <<
SP <<
"int nsum = 0;\n";
388 out <<
SP <<
SP <<
SP <<
SP <<
"constexpr int nsum = kw*kh;\n";
391 out <<
SP <<
SP <<
SP <<
SP <<
"for (int l = i; l < i + kh; l++) {\n";
392 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
"if (l < 0 || l >= hsize) continue;\n";
394 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
"for (int m = j; m < j + kw; m++) {\n";
395 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"if (m < 0 || m >= wsize) continue;\n";
396 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"int index = inputOffset + l*wsize + m;\n";
398 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"auto xval = tensor_" <<
fNX <<
"[index];\n";
399 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"if (xval > value) value = xval;\n";
403 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"value += tensor_" <<
fNX <<
"[index];\n";
412 out <<
SP <<
SP <<
SP <<
SP <<
"value /= float(nsum);\n";
414 out <<
SP <<
SP <<
SP <<
SP <<
"tensor_" <<
fNY <<
"[outIndex++] = value;\n";
415 out <<
SP <<
SP <<
SP <<
"}\n";
416 out <<
SP <<
SP <<
"}\n";
421 out <<
SP <<
"size_t outIndex = 0;\n";
422 out <<
SP <<
"for (size_t n = 0; n < " <<
fShapeX[0]*
fShapeX[1] <<
"; n++) {\n";
424 out <<
SP <<
SP <<
"for (int i = hmin; i < hmax; i+=" <<
fAttrStrides[0] <<
") {\n";
425 out <<
SP <<
SP <<
SP <<
"for (int j = wmin; j < wmax; j+=" <<
fAttrStrides[1] <<
") {\n";
426 out <<
SP <<
SP <<
SP <<
SP <<
"for (int k = dmin; k < dmax; k+=" <<
fAttrStrides[2] <<
") {\n";
429 out <<
SP <<
SP <<
SP <<
SP <<
"float value = -INFINITY;\n";
431 out <<
SP <<
SP <<
SP <<
SP <<
"float value = 0;\n";
433 out <<
SP <<
SP <<
SP <<
SP <<
"int nsum = 0;\n";
435 out <<
SP <<
SP <<
SP <<
SP <<
"constexpr int nsum = kw*kh*kd;\n";
438 out <<
SP <<
SP <<
SP <<
SP <<
"for (int l = i; l < i + kh; l++) {\n";
439 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
"if (l < 0 || l >= hsize) continue;\n";
441 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
"for (int m = j; m < j + kw; m++) {\n";
442 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"if (m < 0 || m >= wsize) continue;\n";
444 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"for (int p = k; p < k + kd; p++) {\n";
445 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"if (p < 0 || p >= dsize) continue;\n";
446 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"int index = inputOffset + l*dwsize + m*dsize + p;\n";
449 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"auto xval = tensor_" <<
fNX <<
"[index];\n";
450 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"if (xval > value) value = xval;\n";
454 out <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
SP <<
"value += tensor_" <<
fNX <<
"[index];\n";
461 out <<
SP <<
SP <<
SP <<
SP <<
"}\n";
464 out <<
SP <<
SP <<
SP <<
SP <<
"value /= float(nsum);\n";
467 out <<
SP <<
SP <<
SP <<
SP <<
"tensor_" <<
fNY <<
"[outIndex++] = value;\n";
468 out <<
SP <<
SP <<
SP <<
SP <<
"}\n" ;
469 out <<
SP <<
SP <<
SP <<
"}\n";
470 out <<
SP <<
SP <<
"}\n";
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t hmin
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t hmax
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t wmin
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t attr
Option_t Option_t TPoint TPoint const char mode
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t wmax
void AddNeededStdLib(std::string libname)
const ETensorType & GetTensorType(std::string name)
void AddIntermediateTensor(std::string tensor_name, ETensorType type, std::vector< Dim > dim_shape)
bool CheckIfTensorAlreadyExist(std::string tensor_name)
const std::vector< size_t > & GetTensorShape(std::string name)
std::string GenerateInitCode() override
std::vector< size_t > fShapeY
size_t fAttrCountIncludePad
std::vector< size_t > fAttrKernelShape
std::vector< size_t > fAttrStrides
std::vector< size_t > fAttrDilations
std::vector< size_t > fAttrPads
virtual std::string GenerateSessionMembersCode(std::string opName) override
std::vector< std::vector< size_t > > ShapeInference(std::vector< std::vector< size_t > > input) override
void Initialize(RModel &model) override
std::vector< ETensorType > TypeInference(std::vector< ETensorType > input) override
std::string Generate(std::string OpName) override
std::vector< size_t > fShapeX
ROperator_Pool(PoolOpMode mode, RAttributes_Pool attr, std::string nameX, std::string nameY)
std::vector< std::string_view > fInputTensorNames
const std::string SP
space used to correctly indent the generated C++ code
std::vector< std::string_view > fOutputTensorNames
std::string ConvertShapeToString(std::vector< size_t > shape)
create variable transformations
std::vector< size_t > pads
std::vector< size_t > kernel_shape
std::vector< size_t > dilations
std::vector< size_t > strides