1#ifndef TMVA_SOFIE_ROPERATOR_Concat
2 #define TMVA_SOFIE_ROPERATOR_Concat
16 namespace Experimental{
40 [](
const std::string& s) -> std::string_view { return s; });
50 std::vector<std::vector<size_t>>
ret(1);
56 throw std::runtime_error(
"TMVA SOFIE Concat Op - invalid axis value ");
61 for (
size_t i = 0; i <
inputs.size(); i++) {
63 throw std::runtime_error(
"TMVA SOFIE Concat Op - input tensors have different shapes " +
69 throw std::runtime_error(
"TMVA SOFIE Concat Op - input tensors have wrong shapes " +
79 std::vector<int> stack;
82 for(
size_t i = 0; i <
inputs.size(); i++) {
84 throw std::runtime_error(
"TMVA SOFIE Concat Op - input tensors have different shapes " +
fInputs[i] +
" : " +
91 throw std::runtime_error(
"TMVA SOFIE Concat Op - input tensors have wrong shapes " +
111 throw std::runtime_error(
"TMVA SOFIE Concat Op - invalid axis value ");
115 for (
size_t i = 0; i <
inputs.size(); i++) {
117 throw std::runtime_error(
"TMVA SOFIE Concat Op - input tensors have different shapes " +
fInputs[i] +
" : " +
127 static_cast<size_t>(-1)};
136 throw std::runtime_error(
"TMVA SOFIE Concat Op - input tensors have wrong shapes " +
167 throw std::runtime_error(
"TMVA SOFIE Concat Op - stacking (i.e. COncatFromSequence with new_axis=1) is not supported ");
175 throw std::runtime_error(
"TMVA SOFIE Concat Op Input Tensor " + it +
" is not found in model");
229 for (
size_t i = 0; i <
inputData.size(); i++)
257 throw std::runtime_error(
"TMVA SOFIE Concat called to Generate without being initialized first");
259 std::stringstream out;
263 for(
int i = 0; i<
fAxis; ++i){
271 for(
size_t i=0; i<
fInputs.size(); ++i) {
288 for (
int i = 0; i <
fAxis; ++i) {
290 out <<
SP <<
"for (size_t i" << i <<
" = 0; i" << i <<
" < " <<
fOutputShape[i].GetVal() <<
"; ++i" << i <<
") {\n";
293 out <<
SP <<
SP <<
SP <<
"int idxOut = ";
294 for (
int k = 0; k <
fAxis; k++) {
295 if (k > 0) out <<
" + ";
296 out <<
outStride[k].GetVal() <<
"*i" << k;
303 out <<
SP <<
SP <<
SP <<
"int idxIn" <<
j <<
" = ";
304 for (
int k = 0; k <
fAxis; k++) {
305 if (k > 0) out <<
" + ";
310 out <<
SP <<
SP <<
SP <<
SP <<
"tensor_" <<
fOutput <<
"[idxOut+iC] = tensor_" <<
fInputs[
j] <<
"[idxIn" <<
j <<
"+iC];\n";
311 out <<
SP <<
SP <<
SP <<
"}\n";
314 for (
int i = 0; i <
fAxis; ++i) {
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h offset
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h length
const_iterator begin() const
const_iterator end() const
std::vector< size_t > GetTensorShape(const std::string &name) const
std::vector< Dim > GetDimTensorShape(const std::string &name) const
void AddIntermediateTensor(std::string tensor_name, ETensorType type, std::vector< Dim > dim_shape)
bool CheckIfTensorAlreadyExist(std::string tensor_name)
void AddConstantTensor(std::string tensor_name, ETensorType type, std::vector< std::size_t > shape, std::shared_ptr< void > data)
bool IsShapeTensor(const std::string &name) const
check if a tensor is a shape tensor
bool IsInitializedTensor(const std::string &name) const
bool IsConstantTensor(const std::string &name) const
std::shared_ptr< void > GetInitializedTensorData(std::string tensor_name)
void SetNotWritableInitializedTensor(const std::string &tensor_name)
ETensorType GetTensorType(std::string name) const
const std::vector< Dim > & GetShapeTensorValues(const std::string &tensor_name) const
const std::vector< std::string > & GetDimShapeNames() const
void AddShapeTensor(const std::string &name, const std::vector< Dim > &shapeValues, bool scalar=false)
std::vector< std::string > fInputs
std::vector< Dim > ShapeInference(const std::vector< std::vector< Dim > > &inputs, const RModel &model)
std::vector< Dim > fOutputShape
std::vector< std::vector< Dim > > fInputShapes
ROperator_Concat(std::vector< std::string > inputs, int axis, int newAxis, std::string output)
std::vector< ETensorType > TypeInference(std::vector< ETensorType > input) override
std::vector< std::vector< size_t > > ShapeInference(std::vector< std::vector< size_t > > inputs) override
void Initialize(RModel &model) override
std::string Generate(std::string opName) override
std::vector< std::string_view > fInputTensorNames
bool fIsOutputConstant
flag to identify if operator has a constant output (no need to generate code)
const std::string SP
space used to correctly indent the generated C++ code
std::vector< std::string_view > fOutputTensorNames
std::string Clean_name(std::string input_tensor_name)
std::vector< size_t > ComputeStrideFromShape(const std::vector< size_t > &shape)
compute stride of a tensor given its shape (assume layout is row-major)
std::string ConvertDimShapeToString(const std::vector< Dim > &shape)
std::size_t ConvertShapeToLength(const std::vector< size_t > &shape)
std::string ConvertValuesToString(size_t n, const T *data)
std::vector< size_t > ConvertShapeToInt(const std::vector< Dim > &shape)
Convert shape based on Dim to integer format.
std::string ConvertDimShapeToLength(const std::vector< Dim > &shape)
std::string ConvertShapeToString(const std::vector< size_t > &shape)
create variable transformations