68#define NaN numeric_limits<float>::quiet_NaN()
69#define IsNaN(a) TMath::IsNaN(a)
74using std::numeric_limits, std::endl;
81 fNullPValue(
NaN), fAlternatePValue(
NaN),
82 fNullPValueError(0), fAlternatePValueError(0),
83 fTestStatisticData(
NaN),
84 fAllTestStatisticsData(nullptr),
85 fNullDistr(nullptr), fAltDistr(nullptr),
86 fNullDetailedOutput(nullptr), fAltDetailedOutput(nullptr),
87 fPValueIsRightTail(
true),
88 fBackgroundIsAlt(
false)
97 fNullPValue(
nullp), fAlternatePValue(
altp),
98 fNullPValueError(0), fAlternatePValueError(0),
99 fTestStatisticData(
NaN),
100 fAllTestStatisticsData(nullptr),
101 fNullDistr(nullptr), fAltDistr(nullptr),
102 fNullDetailedOutput(nullptr), fAltDetailedOutput(nullptr),
103 fPValueIsRightTail(
true),
104 fBackgroundIsAlt(
false)
113 fNullPValue(
other.fNullPValue), fAlternatePValue(
other.fAlternatePValue),
114 fNullPValueError(
other.fNullPValueError), fAlternatePValueError(
other.fAlternatePValueError),
115 fTestStatisticData(
other.fTestStatisticData),
116 fAllTestStatisticsData(nullptr),
117 fNullDistr(nullptr), fAltDistr(nullptr),
118 fNullDetailedOutput(nullptr), fAltDetailedOutput(nullptr),
119 fPValueIsRightTail(
other.GetPValueIsRightTail() ),
120 fBackgroundIsAlt(
other.GetBackGroundIsAlt() )
137 if (
this == &
other)
return *
this;
171 }
else if (
other->GetNullDistribution()) {
172 fNullDistr = std::make_unique<SamplingDistribution>(*
other->GetNullDistribution());
177 }
else if (
other->GetAltDistribution()) {
178 fAltDistr = std::make_unique<SamplingDistribution>(*
other->GetAltDistribution());
196 if(
other->GetFitInfo() )
fFitInfo = std::make_unique<RooDataSet>( *
other->GetFitInfo());
299 if (
CLb() == 0 )
return -1;
337 std::cout << std::endl <<
"Results " <<
GetName() <<
": " << std::endl;
338 std::cout <<
" - Null p-value = " <<
NullPValue();
340 std::cout << std::endl;
343 std::cout << std::endl;
345 std::cout <<
" - Number of Alt toys: " <<
fAltDistr->GetSize() << std::endl;
347 std::cout <<
" - Number of Null toys: " <<
fNullDistr->GetSize() << std::endl;
350 std::cout <<
" - CL_b: " <<
CLb();
352 std::cout << std::endl;
353 std::cout <<
" - CL_s+b: " <<
CLsplusb();
355 std::cout << std::endl;
356 std::cout <<
" - CL_s: " <<
CLs();
358 std::cout << std::endl;
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
RooArgList is a container object that can hold multiple RooAbsArg objects.
static constexpr double infinity()
Return internal infinity representation.
Variable that can be changed from the outside.
HypoTestResult is a base class for results from hypothesis tests.
std::unique_ptr< RooDataSet > fNullDetailedOutput
void UpdatePValue(const SamplingDistribution *distr, double &pvalue, double &perror, bool pIsRightTail)
updates the pvalue if sufficient data is available
void Print(const Option_t *="") const override
Print out some information about the results Note: use Alt/Null labels for the hypotheses here as the...
double fNullPValue
p-value for the null hypothesis (small number means disfavoured)
bool HasTestStatisticData(void) const
double fAlternatePValueError
error of p-value for the alternate hypothesis (small number means disfavoured)
HypoTestResult & operator=(const HypoTestResult &other)
assignment operator
virtual double CLsplusb() const
Convert AlternatePValue into a "confidence level".
std::unique_ptr< RooDataSet > fAltDetailedOutput
void SetAllTestStatisticsData(const RooArgList *tsd)
virtual void Append(const HypoTestResult *other)
add values from another HypoTestResult
double NullPValueError() const
The error on the Null p-value.
double CLsError() const
The error on the ratio .
virtual double Significance() const
familiar name for the Null p-value in terms of 1-sided Gaussian significance
void SetNullDistribution(SamplingDistribution *null)
~HypoTestResult() override
destructor
HypoTestResult(const char *name=nullptr)
default constructor
double SignificanceError() const
The error on the significance, computed from NullPValueError via error propagation.
virtual double NullPValue() const
Return p-value for null hypothesis.
double CLbError() const
The error on the "confidence level" of the null hypothesis.
void SetTestStatisticData(const double tsd)
double CLsplusbError() const
The error on the "confidence level" of the alternative hypothesis.
double fNullPValueError
error of p-value for the null hypothesis (small number means disfavoured)
double fTestStatisticData
result of the test statistic evaluated on data
void SetAltDistribution(SamplingDistribution *alt)
void SetPValueIsRightTail(bool pr)
std::unique_ptr< const RooArgList > fAllTestStatisticsData
for the case of multiple test statistics, holds all the results
std::unique_ptr< RooDataSet > fFitInfo
std::unique_ptr< SamplingDistribution > fAltDistr
virtual double CLs() const
is simply (not a method, but a quantity)
double fAlternatePValue
p-value for the alternate hypothesis (small number means disfavoured)
std::unique_ptr< SamplingDistribution > fNullDistr
virtual double CLb() const
Convert NullPValue into a "confidence level".
This class simply holds a sampling distribution of some test statistic.
The TNamed class is the base class for all named ROOT classes.
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
const char * GetName() const override
Returns name of object.
virtual void SetName(const char *name)
Set the name of the TNamed.
double normal_pdf(double x, double sigma=1, double x0=0)
Probability density function of the normal (Gaussian) distribution with mean x0 and standard deviatio...
Namespace for the RooStats classes.