Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
HypoTestInverterResult.h
Go to the documentation of this file.
1// @(#)root/roostats:$Id$
2// Author: Kyle Cranmer, Lorenzo Moneta, Gregory Schott, Wouter Verkerke
3/*************************************************************************
4 * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. *
5 * All rights reserved. *
6 * *
7 * For the licensing terms see $ROOTSYS/LICENSE. *
8 * For the list of contributors see $ROOTSYS/README/CREDITS. *
9 *************************************************************************/
10
11#ifndef ROOSTATS_HypoTestInverterResult
12#define ROOSTATS_HypoTestInverterResult
13
15
17
18#include <vector>
19
20class RooRealVar;
21
22namespace RooStats {
23
24class SamplingDistribution;
25
27
28public:
29
30 /// default constructor
31 explicit HypoTestInverterResult(const char *name = nullptr);
32
33 /// constructor
34 HypoTestInverterResult( const char* name,
35 const RooRealVar& scannedVariable,
36 double cl ) ;
37
38 HypoTestInverterResult( const HypoTestInverterResult& other, const char* name );
39
40 /// destructor
41 ~HypoTestInverterResult() override;
42
43 /// operator =
45
46 /// remove points that appear to have failed.
47 int ExclusionCleanup();
48
49 /// merge with the content of another HypoTestInverterResult object
50 bool Add( const HypoTestInverterResult& otherResult );
51
52 ///add the result of a single point (an HypoTestRsult)
53 bool Add( double x, const HypoTestResult & result );
54
55 /// function to return the value of the parameter of interest for the i^th entry in the results
56 double GetXValue( int index ) const ;
57
58 /// function to return the value of the confidence level for the i^th entry in the results
59 double GetYValue( int index ) const ;
60
61 /// function to return the estimated error on the value of the confidence level for the i^th entry in the results
62 double GetYError( int index ) const ;
63
64 /// return the observed CLsplusb value for the i-th entry
65 double CLsplusb( int index) const;
66
67 /// return the observed CLb value for the i-th entry
68 double CLb( int index) const;
69
70 /// return the observed CLb value for the i-th entry
71 double CLs( int index) const;
72
73 /// return the observed CLsplusb value for the i-th entry
74 double CLsplusbError( int index) const;
75
76 /// return the observed CLb value for the i-th entry
77 double CLbError( int index) const;
78
79 /// return the observed CLb value for the i-th entry
80 double CLsError( int index) const;
81
82 /// return a pointer to the i^th result object
83 HypoTestResult* GetResult( int index ) const ;
84
85 double GetLastYValue( ) const { return GetYValue( fXValues.size()-1); }
86
87 double GetLastXValue( ) const { return GetXValue( fXValues.size()-1); }
88
89 double GetLastYError( ) const { return GetYError( fXValues.size()-1); }
90
91 HypoTestResult * GetLastResult( ) const { return GetResult( fXValues.size()-1); }
92
93 /// number of entries in the results array
94 int ArraySize() const { return fXValues.size(); };
95
96 int FindIndex(double xvalue) const;
97
98 /// set the size of the test (rate of Type I error) (eg. 0.05 for a 95% Confidence Interval)
99 virtual void SetTestSize( double size ) { fConfidenceLevel = 1.-size; }
100
101 /// set the confidence level for the interval (eg. 0.95 for a 95% Confidence Interval)
102 void SetConfidenceLevel( double cl ) override { fConfidenceLevel = cl; }
103
104 /// set CLs threshold for exclusion cleanup function
105 inline void SetCLsCleanupThreshold( double th ) { fCLsCleanupThreshold = th; }
106
107 /// flag to switch between using CLsb (default) or CLs as confidence level
108 void UseCLs( bool on = true ) { fUseCLs = on; }
109
110 /// query if one sided result
111 bool IsOneSided() const { return !fIsTwoSided; }
112 /// query if two sided result
113 bool IsTwoSided() const { return fIsTwoSided; }
114
115 /// lower and upper bound of the confidence interval (to get upper/lower limits, multiply the size( = 1-confidence level ) by 2
116 double LowerLimit() override;
117 double UpperLimit() override;
118
119 /// rough estimation of the error on the computed bound of the confidence interval
120 /// Estimate of lower limit error
121 ///function evaluates only a rough error on the lower limit. Be careful when using this estimation
123
124 /// Estimate of lower limit error
125 ///function evaluates only a rough error on the lower limit. Be careful when using this estimation
127
128 /// return expected distribution of p-values (Cls or Clsplusb)
129
131
133
135
136 /// same in terms of alt and null
139 }
142 }
143
144 /// get expected lower limit distributions
145 /// implemented using interpolation
146 /// The size for the sampling distribution is given (by default is given by the average number of toy/point)
148
149 /// get expected upper limit distributions
150 /// implemented using interpolation
152
153 /// get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
154 double GetExpectedLowerLimit(double nsig = 0, const char * opt = "" ) const ;
155
156 /// get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
157 double GetExpectedUpperLimit(double nsig = 0, const char * opt = "") const ;
158
159
160 double FindInterpolatedLimit(double target, bool lowSearch = false, double xmin=1, double xmax=0.0);
161
163
164 /// set the interpolation option, linear (kLinear ) or spline (kSpline)
166
168
169private:
170
171
172 double CalculateEstimatedError(double target, bool lower = true, double xmin = 1, double xmax = 0.0);
173
174 int FindClosestPointIndex(double target, int mode = 0, double xtarget = 0);
175
176 SamplingDistribution* GetLimitDistribution(bool lower ) const;
177
178 double GetExpectedLimit(double nsig, bool lower, const char * opt = "" ) const ;
179
180 double GetGraphX(const TGraph & g, double y0, bool lowSearch, double &xmin, double &xmax) const;
181 double GetGraphX(const TGraph & g, double y0, bool lowSearch = true) const {
182 double xmin=1; double xmax = 0;
183 return GetGraphX(g,y0,lowSearch,xmin,xmax);
184 }
185
186
187protected:
188
190 bool fIsTwoSided; ///< two sided scan (look for lower/upper limit)
195 InterpolOption_t fInterpolOption; ///< interpolation option (linear or spline)
196
199
201
202 static double fgAsymptoticMaxSigma; ///< max sigma value used to scan asymptotic expected p values
203 static int fgAsymptoticNumPoints; ///< number of points used to build expected p-values
204
205 std::vector<double> fXValues;
206
207 TList fYObjects; ///< list of HypoTestResult for each point
208 TList fExpPValues; ///< list of expected sampling distribution for each point
209
210 friend class HypoTestInverter;
212
213 ClassDefOverride(HypoTestInverterResult,5) // HypoTestInverterResult class
214};
215}
216
217#endif
#define g(i)
Definition RSha256.hxx:105
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
#define ClassDefOverride(name, id)
Definition Rtypes.h:346
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t target
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void on
Option_t Option_t TPoint TPoint const char mode
char name[80]
Definition TGX11.cxx:110
float xmin
float xmax
Variable that can be changed from the outside.
Definition RooRealVar.h:37
Class to plot a HypoTestInverterResult, the output of the HypoTestInverter calculator.
HypoTestInverterResult class holds the array of hypothesis test results and compute a confidence inte...
double GetGraphX(const TGraph &g, double y0, bool lowSearch=true) const
void SetInterpolationOption(InterpolOption_t opt)
set the interpolation option, linear (kLinear ) or spline (kSpline)
double GetYValue(int index) const
function to return the value of the confidence level for the i^th entry in the results
virtual void SetTestSize(double size)
set the size of the test (rate of Type I error) (eg. 0.05 for a 95% Confidence Interval)
double LowerLimitEstimatedError()
rough estimation of the error on the computed bound of the confidence interval Estimate of lower limi...
double FindInterpolatedLimit(double target, bool lowSearch=false, double xmin=1, double xmax=0.0)
interpolate to find a limit value Use a linear or a spline interpolation depending on the interpolati...
double UpperLimitEstimatedError()
Estimate of lower limit error function evaluates only a rough error on the lower limit.
SamplingDistribution * GetLowerLimitDistribution() const
get expected lower limit distributions implemented using interpolation The size for the sampling dist...
SamplingDistribution * GetSignalAndBackgroundTestStatDist(int index) const
get the signal and background test statistic distribution
HypoTestResult * GetResult(int index) const
return a pointer to the i^th result object
HypoTestInverterResult & operator=(const HypoTestInverterResult &other)
operator =
InterpolOption_t fInterpolOption
interpolation option (linear or spline)
int ArraySize() const
number of entries in the results array
double CLsplusbError(int index) const
return the observed CLsplusb value for the i-th entry
void SetCLsCleanupThreshold(double th)
set CLs threshold for exclusion cleanup function
double CLsError(int index) const
return the observed CLb value for the i-th entry
double GetGraphX(const TGraph &g, double y0, bool lowSearch, double &xmin, double &xmax) const
return the X value of the given graph for the target value y0 the graph is evaluated using linear int...
double CLbError(int index) const
return the observed CLb value for the i-th entry
void UseCLs(bool on=true)
flag to switch between using CLsb (default) or CLs as confidence level
double GetExpectedUpperLimit(double nsig=0, const char *opt="") const
get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
InterpolOption_t GetInterpolationOption() const
double GetXValue(int index) const
function to return the value of the parameter of interest for the i^th entry in the results
double UpperLimit() override
return the interval upper limit
bool IsOneSided() const
query if one sided result
bool Add(const HypoTestInverterResult &otherResult)
merge with the content of another HypoTestInverterResult object
int FindClosestPointIndex(double target, int mode=0, double xtarget=0)
TList fExpPValues
list of expected sampling distribution for each point
double GetExpectedLowerLimit(double nsig=0, const char *opt="") const
get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
bool fIsTwoSided
two sided scan (look for lower/upper limit)
double CalculateEstimatedError(double target, bool lower=true, double xmin=1, double xmax=0.0)
Return an error estimate on the upper(lower) limit.
static int fgAsymptoticNumPoints
number of points used to build expected p-values
static double fgAsymptoticMaxSigma
max sigma value used to scan asymptotic expected p values
int ExclusionCleanup()
remove points that appear to have failed.
double LowerLimit() override
lower and upper bound of the confidence interval (to get upper/lower limits, multiply the size( = 1-c...
double CLs(int index) const
return the observed CLb value for the i-th entry
int FindIndex(double xvalue) const
find the index corresponding at the poi value xvalue If no points is found return -1 Note that a tole...
double GetYError(int index) const
function to return the estimated error on the value of the confidence level for the i^th entry in the...
double CLb(int index) const
return the observed CLb value for the i-th entry
TList fYObjects
list of HypoTestResult for each point
void SetConfidenceLevel(double cl) override
set the confidence level for the interval (eg. 0.95 for a 95% Confidence Interval)
double GetExpectedLimit(double nsig, bool lower, const char *opt="") const
get expected limit (lower/upper) depending on the flag for asymptotic is a special case (the distribu...
SamplingDistribution * GetExpectedPValueDist(int index) const
return expected distribution of p-values (Cls or Clsplusb)
double CLsplusb(int index) const
return the observed CLsplusb value for the i-th entry
SamplingDistribution * GetLimitDistribution(bool lower) const
get the limit distribution (lower/upper depending on the flag) by interpolating the expected p values...
SamplingDistribution * GetUpperLimitDistribution() const
get expected upper limit distributions implemented using interpolation
SamplingDistribution * GetNullTestStatDist(int index) const
same in terms of alt and null
SamplingDistribution * GetAltTestStatDist(int index) const
SamplingDistribution * GetBackgroundTestStatDist(int index) const
get the background test statistic distribution
bool IsTwoSided() const
query if two sided result
A class for performing a hypothesis test inversion by scanning the hypothesis test results of a HypoT...
HypoTestResult is a base class for results from hypothesis tests.
This class simply holds a sampling distribution of some test statistic.
SimpleInterval is a concrete implementation of the ConfInterval interface.
double fConfidenceLevel
confidence level
A TGraph is an object made of two arrays X and Y with npoints each.
Definition TGraph.h:41
A doubly linked list.
Definition TList.h:38
Double_t x[n]
Definition legend1.C:17
Namespace for the RooStats classes.
Definition CodegenImpl.h:58