Logo ROOT  
Reference Guide
 
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Loading...
Searching...
No Matches
HybridCalculator.cxx
Go to the documentation of this file.
1// @(#)root/roostats:$Id$
2// Author: Kyle Cranmer, Sven Kreiss 23/05/10
3/*************************************************************************
4 * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. *
5 * All rights reserved. *
6 * *
7 * For the licensing terms see $ROOTSYS/LICENSE. *
8 * For the list of contributors see $ROOTSYS/README/CREDITS. *
9 *************************************************************************/
10
11/** \class RooStats::HybridCalculator
12 \ingroup Roostats
13
14Same purpose as HybridCalculatorOriginal, but different implementation.
15
16This class implements the Hypothesis test calculation using an hybrid
17(frequentist/bayesian) procedure.A frequentist sampling of the test statistic
18distribution is obtained but with marginalization of the nuisance parameters.
19The toys are generated by sampling the nuisance parameters according to their
20prior distribution.
21
22The use of the of ToyMCSampler as the TestStatSampler is assumed.
23
24*/
25
28
29
30
31using namespace RooStats;
32using std::endl;
33
34////////////////////////////////////////////////////////////////////////////////
35
37
38 if( fPriorNuisanceNull && (!fNullModel->GetNuisanceParameters() || fNullModel->GetNuisanceParameters()->empty()) ) {
39 oocoutE(nullptr,InputArguments) << "HybridCalculator - Nuisance PDF has been specified, but is unaware of which parameters are the nuisance parameters. Must set nuisance parameters in the Null ModelConfig." << std::endl;
40 return -1; // error
41 }
42 if( fPriorNuisanceAlt && (!fAltModel->GetNuisanceParameters() || fAltModel->GetNuisanceParameters()->empty()) ) {
43 oocoutE(nullptr,InputArguments) << "HybridCalculator - Nuisance PDF has been specified, but is unaware of which parameters are the nuisance parameters. Must set nuisance parameters in the Alt ModelConfig" << std::endl;
44 return -1; // error
45 }
46
47 return 0; // ok
48}
49
50////////////////////////////////////////////////////////////////////////////////
51
52int HybridCalculator::PreNullHook(RooArgSet* /*parameterPoint*/, double obsTestStat) const {
53
54
55 // ****** any TestStatSampler ********
56
58 // Setup Priors for ad hoc Hybrid
60 } else if(
61 fNullModel->GetNuisanceParameters() == nullptr ||
62 fNullModel->GetNuisanceParameters()->empty()
63 ) {
64 oocoutI(nullptr,InputArguments)
65 << "HybridCalculator - No nuisance parameters specified for Null model and no prior forced. "
66 << "Case is reduced to simple hypothesis testing with no uncertainty." << std::endl;
67 } else {
68 oocoutI(nullptr,InputArguments) << "HybridCalculator - Using uniform prior on nuisance parameters (Null model)." << std::endl;
69 }
70
71
72 // ***** ToyMCSampler specific *******
73
74 // check whether TestStatSampler is a ToyMCSampler
76 if(toymcs) {
77 oocoutI(nullptr,InputArguments) << "Using a ToyMCSampler. Now configuring for Null." << std::endl;
78
79 // variable number of toys
80 if(fNToysNull >= 0) toymcs->SetNToys(fNToysNull);
81
82 // adaptive sampling
83 if(fNToysNullTail) {
84 oocoutI(nullptr,InputArguments) << "Adaptive Sampling" << std::endl;
85 if(GetTestStatSampler()->GetTestStatistic()->PValueIsRightTail()) {
86 toymcs->SetToysRightTail(fNToysNullTail, obsTestStat);
87 }else{
88 toymcs->SetToysLeftTail(fNToysNullTail, obsTestStat);
89 }
90 }else{
91 toymcs->SetToysBothTails(0, 0, obsTestStat); // disable adaptive sampling
92 }
93
94 GetNullModel()->LoadSnapshot();
95 }
96
97 return 0;
98}
99
100////////////////////////////////////////////////////////////////////////////////
101
102int HybridCalculator::PreAltHook(RooArgSet* /*parameterPoint*/, double obsTestStat) const {
103
104 // ****** any TestStatSampler ********
105
107 // Setup Priors for ad hoc Hybrid
109 } else if (
110 fAltModel->GetNuisanceParameters()==nullptr ||
111 fAltModel->GetNuisanceParameters()->empty()
112 ) {
113 oocoutI(nullptr,InputArguments)
114 << "HybridCalculator - No nuisance parameters specified for Alt model and no prior forced. "
115 << "Case is reduced to simple hypothesis testing with no uncertainty." << std::endl;
116 } else {
117 oocoutI(nullptr,InputArguments) << "HybridCalculator - Using uniform prior on nuisance parameters (Alt model)." << std::endl;
118 }
119
120
121 // ***** ToyMCSampler specific *******
122
123 // check whether TestStatSampler is a ToyMCSampler
125 if(toymcs) {
126 oocoutI(nullptr,InputArguments) << "Using a ToyMCSampler. Now configuring for Alt." << std::endl;
127
128 // variable number of toys
129 if(fNToysAlt >= 0) toymcs->SetNToys(fNToysAlt);
130
131 // adaptive sampling
132 if(fNToysAltTail) {
133 oocoutI(nullptr,InputArguments) << "Adaptive Sampling" << std::endl;
134 if(GetTestStatSampler()->GetTestStatistic()->PValueIsRightTail()) {
135 toymcs->SetToysLeftTail(fNToysAltTail, obsTestStat);
136 }else{
137 toymcs->SetToysRightTail(fNToysAltTail, obsTestStat);
138 }
139 }else{
140 toymcs->SetToysBothTails(0, 0, obsTestStat); // disable adaptive sampling
141 }
142 }
143
144 return 0;
145}
#define oocoutE(o, a)
#define oocoutI(o, a)
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition RooArgSet.h:24
int CheckHook(void) const override
check whether all input is consistent
int PreAltHook(RooArgSet *, double obsTestStat) const override
configure TestStatSampler for the Alt run
int PreNullHook(RooArgSet *, double obsTestStat) const override
configure TestStatSampler for the Null run
const ModelConfig * GetNullModel(void) const
TestStatSampler * GetTestStatSampler(void) const
Returns instance of TestStatSampler.
virtual void SetPriorNuisance(RooAbsPdf *)=0
How to randomize the prior. Set to nullptr to deactivate randomization.
ToyMCSampler is an implementation of the TestStatSampler interface.
Namespace for the RooStats classes.
Definition CodegenImpl.h:58