from ROOT import TMVA, TFile, TTree, TCut
from subprocess import call
from os.path import isfile
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.optimizers import SGD
output =
TFile.Open(
'TMVA_Classification_Keras.root',
'RECREATE')
'!V:!Silent:Color:DrawProgressBar:Transformations=D,G:AnalysisType=Classification')
if not isfile('tmva_class_example.root'):
call(['curl', '-L', '-O', 'http://root.cern/files/tmva_class_example.root'])
signal = data.Get('TreeS')
background = data.Get('TreeB')
for branch in signal.GetListOfBranches():
dataloader.AddVariable(branch.GetName())
dataloader.AddSignalTree(signal, 1.0)
dataloader.AddBackgroundTree(background, 1.0)
dataloader.PrepareTrainingAndTestTree(
TCut(
''),
'nTrain_Signal=4000:nTrain_Background=4000:SplitMode=Random:NormMode=NumEvents:!V')
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=4))
model.add(Dense(2, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer=SGD(learning_rate=0.01), weighted_metrics=['accuracy', ])
model.save('modelClassification.h5')
model.summary()
factory.BookMethod(dataloader, TMVA.Types.kFisher, 'Fisher',
'!H:!V:Fisher:VarTransform=D,G')
factory.BookMethod(dataloader, TMVA.Types.kPyKeras, 'PyKeras',
'H:!V:VarTransform=D,G:FilenameModel=modelClassification.h5:FilenameTrainedModel=trainedModelClassification.h5:NumEpochs=20:BatchSize=32')
factory.TrainAllMethods()
factory.TestAllMethods()
factory.EvaluateAllMethods()
A specialized string object used for TTree selections.
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
This is the main MVA steering class.
static void PyInitialize()
Initialize Python interpreter.