Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.35 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0143 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 59.4228
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.870469 1.10317 0.106309 0.0104364 12516.6 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.68297 0.764711 0.108001 0.0111431 12389.2 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.610261 0.758588 0.107299 0.0104228 12387 0
: 4 | 0.538011 0.765513 0.106417 0.00988532 12431.1 1
: 5 Minimum Test error found - save the configuration
: 5 | 0.501994 0.711443 0.107499 0.0107084 12397.9 0
: 6 | 0.436688 0.739649 0.105369 0.0100821 12593.5 1
: 7 | 0.400979 0.717515 0.103929 0.00990027 12762.1 2
: 8 | 0.348545 0.719073 0.105955 0.0102766 12542 3
: 9 | 0.296317 0.749271 0.105786 0.0110478 12666.5 4
: 10 | 0.248201 0.73938 0.105487 0.00990771 12555.1 5
:
: Elapsed time for training with 1600 events: 1.08 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0534 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 11.6434
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.21892 0.875757 0.805818 0.0715445 1634.27 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.94636 0.76524 0.810218 0.072388 1626.39 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.753794 0.740302 0.800734 0.0680271 1637.76 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.710827 0.717052 0.827979 0.0703689 1583.93 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.691107 0.712146 0.806807 0.0705696 1629.91 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.671911 0.707797 0.835004 0.0753218 1579.61 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.673208 0.689325 0.89115 0.0767236 1473.43 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.645197 0.681302 0.821937 0.0705605 1597.07 0
: 9 | 0.619877 0.68574 0.793351 0.0671291 1652.39 1
: 10 Minimum Test error found - save the configuration
: 10 | 0.605024 0.653208 0.840095 0.0755131 1569.48 0
:
: Elapsed time for training with 1600 events: 8.31 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.383 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 8.922e-03
: 2 : vars : 8.681e-03
: 3 : vars : 7.339e-03
: 4 : vars : 7.337e-03
: 5 : vars : 7.313e-03
: 6 : vars : 7.294e-03
: 7 : vars : 7.267e-03
: 8 : vars : 7.156e-03
: 9 : vars : 7.101e-03
: 10 : vars : 6.854e-03
: 11 : vars : 6.850e-03
: 12 : vars : 6.650e-03
: 13 : vars : 6.477e-03
: 14 : vars : 6.474e-03
: 15 : vars : 6.397e-03
: 16 : vars : 6.386e-03
: 17 : vars : 6.345e-03
: 18 : vars : 6.342e-03
: 19 : vars : 6.293e-03
: 20 : vars : 6.205e-03
: 21 : vars : 6.156e-03
: 22 : vars : 6.153e-03
: 23 : vars : 6.134e-03
: 24 : vars : 6.082e-03
: 25 : vars : 6.080e-03
: 26 : vars : 6.045e-03
: 27 : vars : 6.030e-03
: 28 : vars : 5.997e-03
: 29 : vars : 5.879e-03
: 30 : vars : 5.878e-03
: 31 : vars : 5.869e-03
: 32 : vars : 5.842e-03
: 33 : vars : 5.825e-03
: 34 : vars : 5.825e-03
: 35 : vars : 5.823e-03
: 36 : vars : 5.821e-03
: 37 : vars : 5.740e-03
: 38 : vars : 5.663e-03
: 39 : vars : 5.644e-03
: 40 : vars : 5.642e-03
: 41 : vars : 5.627e-03
: 42 : vars : 5.601e-03
: 43 : vars : 5.569e-03
: 44 : vars : 5.522e-03
: 45 : vars : 5.522e-03
: 46 : vars : 5.522e-03
: 47 : vars : 5.519e-03
: 48 : vars : 5.514e-03
: 49 : vars : 5.476e-03
: 50 : vars : 5.462e-03
: 51 : vars : 5.430e-03
: 52 : vars : 5.389e-03
: 53 : vars : 5.340e-03
: 54 : vars : 5.337e-03
: 55 : vars : 5.337e-03
: 56 : vars : 5.241e-03
: 57 : vars : 5.206e-03
: 58 : vars : 5.176e-03
: 59 : vars : 5.175e-03
: 60 : vars : 5.169e-03
: 61 : vars : 5.142e-03
: 62 : vars : 5.065e-03
: 63 : vars : 5.048e-03
: 64 : vars : 5.043e-03
: 65 : vars : 5.041e-03
: 66 : vars : 5.033e-03
: 67 : vars : 5.008e-03
: 68 : vars : 4.986e-03
: 69 : vars : 4.968e-03
: 70 : vars : 4.964e-03
: 71 : vars : 4.963e-03
: 72 : vars : 4.936e-03
: 73 : vars : 4.935e-03
: 74 : vars : 4.899e-03
: 75 : vars : 4.858e-03
: 76 : vars : 4.850e-03
: 77 : vars : 4.743e-03
: 78 : vars : 4.732e-03
: 79 : vars : 4.725e-03
: 80 : vars : 4.706e-03
: 81 : vars : 4.680e-03
: 82 : vars : 4.669e-03
: 83 : vars : 4.625e-03
: 84 : vars : 4.621e-03
: 85 : vars : 4.605e-03
: 86 : vars : 4.605e-03
: 87 : vars : 4.598e-03
: 88 : vars : 4.525e-03
: 89 : vars : 4.518e-03
: 90 : vars : 4.516e-03
: 91 : vars : 4.513e-03
: 92 : vars : 4.475e-03
: 93 : vars : 4.468e-03
: 94 : vars : 4.460e-03
: 95 : vars : 4.449e-03
: 96 : vars : 4.421e-03
: 97 : vars : 4.401e-03
: 98 : vars : 4.389e-03
: 99 : vars : 4.367e-03
: 100 : vars : 4.352e-03
: 101 : vars : 4.294e-03
: 102 : vars : 4.292e-03
: 103 : vars : 4.291e-03
: 104 : vars : 4.276e-03
: 105 : vars : 4.198e-03
: 106 : vars : 4.186e-03
: 107 : vars : 4.148e-03
: 108 : vars : 4.120e-03
: 109 : vars : 4.096e-03
: 110 : vars : 4.089e-03
: 111 : vars : 4.081e-03
: 112 : vars : 4.043e-03
: 113 : vars : 4.017e-03
: 114 : vars : 4.017e-03
: 115 : vars : 4.008e-03
: 116 : vars : 3.990e-03
: 117 : vars : 3.990e-03
: 118 : vars : 3.980e-03
: 119 : vars : 3.974e-03
: 120 : vars : 3.948e-03
: 121 : vars : 3.947e-03
: 122 : vars : 3.933e-03
: 123 : vars : 3.859e-03
: 124 : vars : 3.855e-03
: 125 : vars : 3.838e-03
: 126 : vars : 3.837e-03
: 127 : vars : 3.806e-03
: 128 : vars : 3.801e-03
: 129 : vars : 3.782e-03
: 130 : vars : 3.763e-03
: 131 : vars : 3.747e-03
: 132 : vars : 3.747e-03
: 133 : vars : 3.746e-03
: 134 : vars : 3.744e-03
: 135 : vars : 3.734e-03
: 136 : vars : 3.732e-03
: 137 : vars : 3.718e-03
: 138 : vars : 3.713e-03
: 139 : vars : 3.688e-03
: 140 : vars : 3.685e-03
: 141 : vars : 3.679e-03
: 142 : vars : 3.671e-03
: 143 : vars : 3.665e-03
: 144 : vars : 3.663e-03
: 145 : vars : 3.656e-03
: 146 : vars : 3.643e-03
: 147 : vars : 3.641e-03
: 148 : vars : 3.635e-03
: 149 : vars : 3.614e-03
: 150 : vars : 3.606e-03
: 151 : vars : 3.604e-03
: 152 : vars : 3.595e-03
: 153 : vars : 3.594e-03
: 154 : vars : 3.590e-03
: 155 : vars : 3.583e-03
: 156 : vars : 3.566e-03
: 157 : vars : 3.531e-03
: 158 : vars : 3.510e-03
: 159 : vars : 3.508e-03
: 160 : vars : 3.508e-03
: 161 : vars : 3.474e-03
: 162 : vars : 3.471e-03
: 163 : vars : 3.400e-03
: 164 : vars : 3.318e-03
: 165 : vars : 3.306e-03
: 166 : vars : 3.289e-03
: 167 : vars : 3.283e-03
: 168 : vars : 3.273e-03
: 169 : vars : 3.271e-03
: 170 : vars : 3.263e-03
: 171 : vars : 3.239e-03
: 172 : vars : 3.229e-03
: 173 : vars : 3.210e-03
: 174 : vars : 3.206e-03
: 175 : vars : 3.164e-03
: 176 : vars : 3.148e-03
: 177 : vars : 3.113e-03
: 178 : vars : 3.111e-03
: 179 : vars : 3.076e-03
: 180 : vars : 3.068e-03
: 181 : vars : 3.057e-03
: 182 : vars : 3.038e-03
: 183 : vars : 3.027e-03
: 184 : vars : 3.002e-03
: 185 : vars : 3.002e-03
: 186 : vars : 3.001e-03
: 187 : vars : 2.999e-03
: 188 : vars : 2.982e-03
: 189 : vars : 2.981e-03
: 190 : vars : 2.975e-03
: 191 : vars : 2.946e-03
: 192 : vars : 2.941e-03
: 193 : vars : 2.938e-03
: 194 : vars : 2.912e-03
: 195 : vars : 2.889e-03
: 196 : vars : 2.887e-03
: 197 : vars : 2.868e-03
: 198 : vars : 2.837e-03
: 199 : vars : 2.817e-03
: 200 : vars : 2.755e-03
: 201 : vars : 2.746e-03
: 202 : vars : 2.730e-03
: 203 : vars : 2.704e-03
: 204 : vars : 2.704e-03
: 205 : vars : 2.685e-03
: 206 : vars : 2.639e-03
: 207 : vars : 2.594e-03
: 208 : vars : 2.567e-03
: 209 : vars : 2.512e-03
: 210 : vars : 2.509e-03
: 211 : vars : 2.486e-03
: 212 : vars : 2.480e-03
: 213 : vars : 2.479e-03
: 214 : vars : 2.459e-03
: 215 : vars : 2.459e-03
: 216 : vars : 2.430e-03
: 217 : vars : 2.319e-03
: 218 : vars : 2.224e-03
: 219 : vars : 2.205e-03
: 220 : vars : 2.195e-03
: 221 : vars : 2.192e-03
: 222 : vars : 2.188e-03
: 223 : vars : 2.167e-03
: 224 : vars : 2.156e-03
: 225 : vars : 2.110e-03
: 226 : vars : 2.008e-03
: 227 : vars : 1.988e-03
: 228 : vars : 1.948e-03
: 229 : vars : 1.944e-03
: 230 : vars : 1.873e-03
: 231 : vars : 1.848e-03
: 232 : vars : 1.810e-03
: 233 : vars : 1.699e-03
: 234 : vars : 1.600e-03
: 235 : vars : 1.446e-03
: 236 : vars : 1.433e-03
: 237 : vars : 1.390e-03
: 238 : vars : 1.330e-03
: 239 : vars : 1.308e-03
: 240 : vars : 1.229e-03
: 241 : vars : 1.215e-03
: 242 : vars : 1.209e-03
: 243 : vars : 1.181e-03
: 244 : vars : 1.034e-03
: 245 : vars : 6.489e-04
: 246 : vars : 5.348e-04
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.93443
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.76831
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 8.53622
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.22787
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00368 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0142 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0936 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.739
: dataset TMVA_CNN_CPU : 0.688
: dataset TMVA_DNN_CPU : 0.628
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.045 (0.305) 0.398 (0.692) 0.655 (0.854)
: dataset TMVA_CNN_CPU : 0.060 (0.065) 0.295 (0.334) 0.585 (0.626)
: dataset TMVA_DNN_CPU : 0.025 (0.082) 0.188 (0.425) 0.468 (0.654)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m