Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.3 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0146 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 12.549
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.918905 0.902988 0.103094 0.0102599 12926.3 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.680748 0.792631 0.102711 0.0101595 12965.7 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.576659 0.790133 0.102595 0.0100856 12971.6 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.506136 0.736398 0.102204 0.0100743 13025.1 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.431954 0.722413 0.102789 0.0101875 12958.7 0
: 6 | 0.385286 0.753357 0.102245 0.00982986 12984.9 1
: 7 Minimum Test error found - save the configuration
: 7 | 0.339406 0.720651 0.102796 0.0101777 12956.5 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.28949 0.697553 0.102799 0.0101036 12945.7 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.241819 0.696741 0.102756 0.010284 12976.9 0
: 10 | 0.205465 0.756033 0.10232 0.00975711 12964.2 1
:
: Elapsed time for training with 1600 events: 1.05 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0511 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 159.842
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 2.6299 1.3736 0.718381 0.0649205 1836.38 0
: 2 Minimum Test error found - save the configuration
: 2 | 1.00044 0.971158 0.716225 0.0654646 1844 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.778858 0.711825 0.710803 0.0644079 1856.45 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.695177 0.699781 0.708481 0.0644455 1863.25 0
: 5 Minimum Test error found - save the configuration
: 5 | 0.686077 0.683829 0.707907 0.0640735 1863.83 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.673172 0.681676 0.711724 0.0647275 1854.72 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.663326 0.670216 0.713938 0.0648296 1848.69 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.654488 0.665713 0.714415 0.0651996 1848.38 0
: 9 Minimum Test error found - save the configuration
: 9 | 0.645641 0.655698 0.710684 0.0646348 1857.44 0
: 10 Minimum Test error found - save the configuration
: 10 | 0.628594 0.645074 0.709173 0.0638172 1859.44 0
:
: Elapsed time for training with 1600 events: 7.19 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.335 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.014e-02
: 2 : vars : 9.628e-03
: 3 : vars : 8.649e-03
: 4 : vars : 8.213e-03
: 5 : vars : 8.032e-03
: 6 : vars : 7.946e-03
: 7 : vars : 7.846e-03
: 8 : vars : 7.694e-03
: 9 : vars : 7.557e-03
: 10 : vars : 7.499e-03
: 11 : vars : 7.352e-03
: 12 : vars : 7.281e-03
: 13 : vars : 7.173e-03
: 14 : vars : 6.732e-03
: 15 : vars : 6.698e-03
: 16 : vars : 6.586e-03
: 17 : vars : 6.533e-03
: 18 : vars : 6.447e-03
: 19 : vars : 6.380e-03
: 20 : vars : 6.298e-03
: 21 : vars : 6.195e-03
: 22 : vars : 6.139e-03
: 23 : vars : 6.097e-03
: 24 : vars : 6.043e-03
: 25 : vars : 6.039e-03
: 26 : vars : 5.950e-03
: 27 : vars : 5.934e-03
: 28 : vars : 5.867e-03
: 29 : vars : 5.720e-03
: 30 : vars : 5.647e-03
: 31 : vars : 5.553e-03
: 32 : vars : 5.551e-03
: 33 : vars : 5.539e-03
: 34 : vars : 5.439e-03
: 35 : vars : 5.399e-03
: 36 : vars : 5.397e-03
: 37 : vars : 5.353e-03
: 38 : vars : 5.350e-03
: 39 : vars : 5.344e-03
: 40 : vars : 5.338e-03
: 41 : vars : 5.324e-03
: 42 : vars : 5.314e-03
: 43 : vars : 5.273e-03
: 44 : vars : 5.252e-03
: 45 : vars : 5.251e-03
: 46 : vars : 5.227e-03
: 47 : vars : 5.193e-03
: 48 : vars : 5.155e-03
: 49 : vars : 5.127e-03
: 50 : vars : 5.117e-03
: 51 : vars : 5.109e-03
: 52 : vars : 5.071e-03
: 53 : vars : 5.065e-03
: 54 : vars : 5.056e-03
: 55 : vars : 5.041e-03
: 56 : vars : 5.010e-03
: 57 : vars : 5.000e-03
: 58 : vars : 4.942e-03
: 59 : vars : 4.935e-03
: 60 : vars : 4.910e-03
: 61 : vars : 4.872e-03
: 62 : vars : 4.845e-03
: 63 : vars : 4.841e-03
: 64 : vars : 4.837e-03
: 65 : vars : 4.836e-03
: 66 : vars : 4.829e-03
: 67 : vars : 4.823e-03
: 68 : vars : 4.820e-03
: 69 : vars : 4.785e-03
: 70 : vars : 4.769e-03
: 71 : vars : 4.768e-03
: 72 : vars : 4.742e-03
: 73 : vars : 4.741e-03
: 74 : vars : 4.731e-03
: 75 : vars : 4.713e-03
: 76 : vars : 4.692e-03
: 77 : vars : 4.666e-03
: 78 : vars : 4.652e-03
: 79 : vars : 4.650e-03
: 80 : vars : 4.646e-03
: 81 : vars : 4.645e-03
: 82 : vars : 4.637e-03
: 83 : vars : 4.636e-03
: 84 : vars : 4.582e-03
: 85 : vars : 4.567e-03
: 86 : vars : 4.551e-03
: 87 : vars : 4.547e-03
: 88 : vars : 4.546e-03
: 89 : vars : 4.525e-03
: 90 : vars : 4.519e-03
: 91 : vars : 4.494e-03
: 92 : vars : 4.491e-03
: 93 : vars : 4.466e-03
: 94 : vars : 4.456e-03
: 95 : vars : 4.450e-03
: 96 : vars : 4.426e-03
: 97 : vars : 4.387e-03
: 98 : vars : 4.344e-03
: 99 : vars : 4.331e-03
: 100 : vars : 4.322e-03
: 101 : vars : 4.273e-03
: 102 : vars : 4.272e-03
: 103 : vars : 4.272e-03
: 104 : vars : 4.192e-03
: 105 : vars : 4.187e-03
: 106 : vars : 4.180e-03
: 107 : vars : 4.172e-03
: 108 : vars : 4.159e-03
: 109 : vars : 4.147e-03
: 110 : vars : 4.140e-03
: 111 : vars : 4.133e-03
: 112 : vars : 4.121e-03
: 113 : vars : 4.109e-03
: 114 : vars : 4.082e-03
: 115 : vars : 4.065e-03
: 116 : vars : 4.062e-03
: 117 : vars : 4.046e-03
: 118 : vars : 4.031e-03
: 119 : vars : 4.007e-03
: 120 : vars : 3.983e-03
: 121 : vars : 3.969e-03
: 122 : vars : 3.965e-03
: 123 : vars : 3.951e-03
: 124 : vars : 3.949e-03
: 125 : vars : 3.938e-03
: 126 : vars : 3.918e-03
: 127 : vars : 3.916e-03
: 128 : vars : 3.848e-03
: 129 : vars : 3.842e-03
: 130 : vars : 3.821e-03
: 131 : vars : 3.817e-03
: 132 : vars : 3.816e-03
: 133 : vars : 3.804e-03
: 134 : vars : 3.792e-03
: 135 : vars : 3.783e-03
: 136 : vars : 3.761e-03
: 137 : vars : 3.737e-03
: 138 : vars : 3.677e-03
: 139 : vars : 3.668e-03
: 140 : vars : 3.645e-03
: 141 : vars : 3.615e-03
: 142 : vars : 3.611e-03
: 143 : vars : 3.600e-03
: 144 : vars : 3.584e-03
: 145 : vars : 3.565e-03
: 146 : vars : 3.549e-03
: 147 : vars : 3.530e-03
: 148 : vars : 3.491e-03
: 149 : vars : 3.476e-03
: 150 : vars : 3.465e-03
: 151 : vars : 3.461e-03
: 152 : vars : 3.458e-03
: 153 : vars : 3.443e-03
: 154 : vars : 3.438e-03
: 155 : vars : 3.438e-03
: 156 : vars : 3.438e-03
: 157 : vars : 3.436e-03
: 158 : vars : 3.423e-03
: 159 : vars : 3.397e-03
: 160 : vars : 3.392e-03
: 161 : vars : 3.371e-03
: 162 : vars : 3.336e-03
: 163 : vars : 3.327e-03
: 164 : vars : 3.318e-03
: 165 : vars : 3.310e-03
: 166 : vars : 3.303e-03
: 167 : vars : 3.287e-03
: 168 : vars : 3.287e-03
: 169 : vars : 3.282e-03
: 170 : vars : 3.229e-03
: 171 : vars : 3.218e-03
: 172 : vars : 3.204e-03
: 173 : vars : 3.201e-03
: 174 : vars : 3.187e-03
: 175 : vars : 3.186e-03
: 176 : vars : 3.183e-03
: 177 : vars : 3.183e-03
: 178 : vars : 3.153e-03
: 179 : vars : 3.113e-03
: 180 : vars : 3.110e-03
: 181 : vars : 3.093e-03
: 182 : vars : 3.072e-03
: 183 : vars : 3.066e-03
: 184 : vars : 3.065e-03
: 185 : vars : 3.059e-03
: 186 : vars : 3.009e-03
: 187 : vars : 3.002e-03
: 188 : vars : 2.990e-03
: 189 : vars : 2.961e-03
: 190 : vars : 2.933e-03
: 191 : vars : 2.909e-03
: 192 : vars : 2.904e-03
: 193 : vars : 2.876e-03
: 194 : vars : 2.873e-03
: 195 : vars : 2.842e-03
: 196 : vars : 2.839e-03
: 197 : vars : 2.839e-03
: 198 : vars : 2.798e-03
: 199 : vars : 2.755e-03
: 200 : vars : 2.731e-03
: 201 : vars : 2.728e-03
: 202 : vars : 2.713e-03
: 203 : vars : 2.697e-03
: 204 : vars : 2.697e-03
: 205 : vars : 2.670e-03
: 206 : vars : 2.649e-03
: 207 : vars : 2.633e-03
: 208 : vars : 2.632e-03
: 209 : vars : 2.629e-03
: 210 : vars : 2.614e-03
: 211 : vars : 2.607e-03
: 212 : vars : 2.580e-03
: 213 : vars : 2.515e-03
: 214 : vars : 2.452e-03
: 215 : vars : 2.416e-03
: 216 : vars : 2.365e-03
: 217 : vars : 2.318e-03
: 218 : vars : 2.312e-03
: 219 : vars : 2.260e-03
: 220 : vars : 2.245e-03
: 221 : vars : 2.244e-03
: 222 : vars : 2.202e-03
: 223 : vars : 2.189e-03
: 224 : vars : 2.179e-03
: 225 : vars : 2.154e-03
: 226 : vars : 2.133e-03
: 227 : vars : 2.060e-03
: 228 : vars : 2.020e-03
: 229 : vars : 2.019e-03
: 230 : vars : 2.004e-03
: 231 : vars : 1.931e-03
: 232 : vars : 1.860e-03
: 233 : vars : 1.810e-03
: 234 : vars : 1.807e-03
: 235 : vars : 1.767e-03
: 236 : vars : 1.739e-03
: 237 : vars : 1.706e-03
: 238 : vars : 1.684e-03
: 239 : vars : 1.606e-03
: 240 : vars : 1.603e-03
: 241 : vars : 1.363e-03
: 242 : vars : 1.135e-03
: 243 : vars : 1.016e-03
: 244 : vars : 9.709e-04
: 245 : vars : 7.049e-04
: 246 : vars : 5.569e-04
: 247 : vars : 2.212e-04
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.57587
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 7.5689
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 9.05567
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 7.75857
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00415 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0125 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0858 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.747
: dataset TMVA_DNN_CPU : 0.690
: dataset TMVA_CNN_CPU : 0.688
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.115 (0.338) 0.410 (0.621) 0.657 (0.839)
: dataset TMVA_DNN_CPU : 0.070 (0.140) 0.255 (0.620) 0.598 (0.836)
: dataset TMVA_CNN_CPU : 0.070 (0.065) 0.270 (0.312) 0.558 (0.650)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m