Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.39 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0273 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 72.3547
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.954 1.04882 0.121358 0.0122057 10993.8 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.705902 0.829208 0.129693 0.0122126 10214.5 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.59356 0.82021 0.154464 0.0116975 8405.32 0
: 4 Minimum Test error found - save the configuration
: 4 | 0.513234 0.784636 0.120292 0.0117044 11051 0
: 5 | 0.472479 0.801214 0.122713 0.012346 10872.8 1
: 6 | 0.407939 0.820612 0.138421 0.0185113 10007.6 2
: 7 | 0.366487 0.818302 0.160706 0.0113951 8036.92 3
: 8 Minimum Test error found - save the configuration
: 8 | 0.317022 0.757121 0.124756 0.0120142 10643.7 0
: 9 | 0.281936 0.826807 0.119746 0.0112702 11062.4 1
: 10 | 0.224828 0.795124 0.127591 0.0143806 10599.7 2
:
: Elapsed time for training with 1600 events: 1.34 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0632 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 15.4445
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 1.52193 0.697617 0.887253 0.082694 1491.5 0
: 2 | 0.737385 0.711376 0.857973 0.0733956 1529.49 1
: 3 | 0.696798 0.699179 0.862193 0.0718973 1518.42 2
: 4 | 0.683018 0.699364 0.854783 0.0730662 1535.08 3
: 5 Minimum Test error found - save the configuration
: 5 | 0.671126 0.694087 0.909393 0.110847 1502.73 0
: 6 Minimum Test error found - save the configuration
: 6 | 0.659055 0.685326 0.885306 0.0766107 1483.87 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.646772 0.685315 0.849401 0.0797585 1559.17 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.635883 0.677584 0.848912 0.0722581 1545.09 0
: 9 | 0.61239 0.679193 0.86912 0.0888004 1537.83 1
: 10 Minimum Test error found - save the configuration
: 10 | 0.590041 0.665901 0.90812 0.0822371 1452.99 0
:
: Elapsed time for training with 1600 events: 8.82 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.403 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 1.012e-02
: 2 : vars : 9.178e-03
: 3 : vars : 8.970e-03
: 4 : vars : 8.937e-03
: 5 : vars : 8.584e-03
: 6 : vars : 8.390e-03
: 7 : vars : 8.222e-03
: 8 : vars : 7.378e-03
: 9 : vars : 7.331e-03
: 10 : vars : 7.285e-03
: 11 : vars : 7.182e-03
: 12 : vars : 7.138e-03
: 13 : vars : 7.109e-03
: 14 : vars : 7.090e-03
: 15 : vars : 7.056e-03
: 16 : vars : 7.038e-03
: 17 : vars : 6.806e-03
: 18 : vars : 6.689e-03
: 19 : vars : 6.623e-03
: 20 : vars : 6.592e-03
: 21 : vars : 6.553e-03
: 22 : vars : 6.498e-03
: 23 : vars : 6.477e-03
: 24 : vars : 6.440e-03
: 25 : vars : 6.414e-03
: 26 : vars : 6.369e-03
: 27 : vars : 6.348e-03
: 28 : vars : 6.310e-03
: 29 : vars : 6.303e-03
: 30 : vars : 6.268e-03
: 31 : vars : 6.256e-03
: 32 : vars : 6.159e-03
: 33 : vars : 6.069e-03
: 34 : vars : 5.993e-03
: 35 : vars : 5.989e-03
: 36 : vars : 5.985e-03
: 37 : vars : 5.912e-03
: 38 : vars : 5.870e-03
: 39 : vars : 5.833e-03
: 40 : vars : 5.815e-03
: 41 : vars : 5.797e-03
: 42 : vars : 5.753e-03
: 43 : vars : 5.747e-03
: 44 : vars : 5.731e-03
: 45 : vars : 5.633e-03
: 46 : vars : 5.633e-03
: 47 : vars : 5.602e-03
: 48 : vars : 5.593e-03
: 49 : vars : 5.589e-03
: 50 : vars : 5.544e-03
: 51 : vars : 5.533e-03
: 52 : vars : 5.385e-03
: 53 : vars : 5.385e-03
: 54 : vars : 5.346e-03
: 55 : vars : 5.296e-03
: 56 : vars : 5.294e-03
: 57 : vars : 5.291e-03
: 58 : vars : 5.268e-03
: 59 : vars : 5.260e-03
: 60 : vars : 5.234e-03
: 61 : vars : 5.215e-03
: 62 : vars : 5.139e-03
: 63 : vars : 5.104e-03
: 64 : vars : 5.102e-03
: 65 : vars : 5.067e-03
: 66 : vars : 5.056e-03
: 67 : vars : 4.994e-03
: 68 : vars : 4.981e-03
: 69 : vars : 4.976e-03
: 70 : vars : 4.975e-03
: 71 : vars : 4.939e-03
: 72 : vars : 4.926e-03
: 73 : vars : 4.913e-03
: 74 : vars : 4.898e-03
: 75 : vars : 4.872e-03
: 76 : vars : 4.829e-03
: 77 : vars : 4.827e-03
: 78 : vars : 4.819e-03
: 79 : vars : 4.788e-03
: 80 : vars : 4.762e-03
: 81 : vars : 4.743e-03
: 82 : vars : 4.742e-03
: 83 : vars : 4.739e-03
: 84 : vars : 4.733e-03
: 85 : vars : 4.722e-03
: 86 : vars : 4.713e-03
: 87 : vars : 4.712e-03
: 88 : vars : 4.699e-03
: 89 : vars : 4.697e-03
: 90 : vars : 4.688e-03
: 91 : vars : 4.619e-03
: 92 : vars : 4.579e-03
: 93 : vars : 4.497e-03
: 94 : vars : 4.486e-03
: 95 : vars : 4.453e-03
: 96 : vars : 4.439e-03
: 97 : vars : 4.433e-03
: 98 : vars : 4.405e-03
: 99 : vars : 4.382e-03
: 100 : vars : 4.361e-03
: 101 : vars : 4.341e-03
: 102 : vars : 4.333e-03
: 103 : vars : 4.318e-03
: 104 : vars : 4.301e-03
: 105 : vars : 4.299e-03
: 106 : vars : 4.275e-03
: 107 : vars : 4.233e-03
: 108 : vars : 4.211e-03
: 109 : vars : 4.152e-03
: 110 : vars : 4.097e-03
: 111 : vars : 4.096e-03
: 112 : vars : 4.049e-03
: 113 : vars : 4.033e-03
: 114 : vars : 4.028e-03
: 115 : vars : 4.019e-03
: 116 : vars : 4.009e-03
: 117 : vars : 3.994e-03
: 118 : vars : 3.992e-03
: 119 : vars : 3.970e-03
: 120 : vars : 3.943e-03
: 121 : vars : 3.939e-03
: 122 : vars : 3.939e-03
: 123 : vars : 3.921e-03
: 124 : vars : 3.908e-03
: 125 : vars : 3.906e-03
: 126 : vars : 3.898e-03
: 127 : vars : 3.852e-03
: 128 : vars : 3.798e-03
: 129 : vars : 3.785e-03
: 130 : vars : 3.780e-03
: 131 : vars : 3.776e-03
: 132 : vars : 3.759e-03
: 133 : vars : 3.739e-03
: 134 : vars : 3.738e-03
: 135 : vars : 3.699e-03
: 136 : vars : 3.658e-03
: 137 : vars : 3.575e-03
: 138 : vars : 3.555e-03
: 139 : vars : 3.546e-03
: 140 : vars : 3.536e-03
: 141 : vars : 3.526e-03
: 142 : vars : 3.513e-03
: 143 : vars : 3.501e-03
: 144 : vars : 3.499e-03
: 145 : vars : 3.497e-03
: 146 : vars : 3.494e-03
: 147 : vars : 3.491e-03
: 148 : vars : 3.478e-03
: 149 : vars : 3.476e-03
: 150 : vars : 3.470e-03
: 151 : vars : 3.468e-03
: 152 : vars : 3.464e-03
: 153 : vars : 3.398e-03
: 154 : vars : 3.369e-03
: 155 : vars : 3.352e-03
: 156 : vars : 3.349e-03
: 157 : vars : 3.349e-03
: 158 : vars : 3.347e-03
: 159 : vars : 3.325e-03
: 160 : vars : 3.311e-03
: 161 : vars : 3.311e-03
: 162 : vars : 3.310e-03
: 163 : vars : 3.298e-03
: 164 : vars : 3.256e-03
: 165 : vars : 3.236e-03
: 166 : vars : 3.225e-03
: 167 : vars : 3.216e-03
: 168 : vars : 3.159e-03
: 169 : vars : 3.061e-03
: 170 : vars : 3.054e-03
: 171 : vars : 3.046e-03
: 172 : vars : 3.025e-03
: 173 : vars : 3.020e-03
: 174 : vars : 3.017e-03
: 175 : vars : 2.997e-03
: 176 : vars : 2.993e-03
: 177 : vars : 2.979e-03
: 178 : vars : 2.936e-03
: 179 : vars : 2.936e-03
: 180 : vars : 2.926e-03
: 181 : vars : 2.889e-03
: 182 : vars : 2.872e-03
: 183 : vars : 2.855e-03
: 184 : vars : 2.809e-03
: 185 : vars : 2.776e-03
: 186 : vars : 2.770e-03
: 187 : vars : 2.764e-03
: 188 : vars : 2.729e-03
: 189 : vars : 2.723e-03
: 190 : vars : 2.722e-03
: 191 : vars : 2.709e-03
: 192 : vars : 2.696e-03
: 193 : vars : 2.671e-03
: 194 : vars : 2.663e-03
: 195 : vars : 2.618e-03
: 196 : vars : 2.615e-03
: 197 : vars : 2.604e-03
: 198 : vars : 2.585e-03
: 199 : vars : 2.566e-03
: 200 : vars : 2.564e-03
: 201 : vars : 2.554e-03
: 202 : vars : 2.546e-03
: 203 : vars : 2.542e-03
: 204 : vars : 2.527e-03
: 205 : vars : 2.524e-03
: 206 : vars : 2.425e-03
: 207 : vars : 2.339e-03
: 208 : vars : 2.329e-03
: 209 : vars : 2.319e-03
: 210 : vars : 2.298e-03
: 211 : vars : 2.260e-03
: 212 : vars : 2.258e-03
: 213 : vars : 2.241e-03
: 214 : vars : 2.225e-03
: 215 : vars : 2.182e-03
: 216 : vars : 2.170e-03
: 217 : vars : 2.156e-03
: 218 : vars : 2.113e-03
: 219 : vars : 2.110e-03
: 220 : vars : 2.092e-03
: 221 : vars : 2.092e-03
: 222 : vars : 2.034e-03
: 223 : vars : 2.029e-03
: 224 : vars : 1.963e-03
: 225 : vars : 1.959e-03
: 226 : vars : 1.958e-03
: 227 : vars : 1.912e-03
: 228 : vars : 1.849e-03
: 229 : vars : 1.844e-03
: 230 : vars : 1.832e-03
: 231 : vars : 1.804e-03
: 232 : vars : 1.735e-03
: 233 : vars : 1.663e-03
: 234 : vars : 1.620e-03
: 235 : vars : 1.495e-03
: 236 : vars : 1.486e-03
: 237 : vars : 1.301e-03
: 238 : vars : 9.313e-04
: 239 : vars : 8.623e-04
: 240 : vars : 1.947e-05
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.83739
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 8.30205
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 7.4544
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 6.89494
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00429 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0145 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.103 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.748
: dataset TMVA_CNN_CPU : 0.649
: dataset TMVA_DNN_CPU : 0.616
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.137 (0.365) 0.415 (0.673) 0.645 (0.876)
: dataset TMVA_CNN_CPU : 0.022 (0.095) 0.165 (0.360) 0.495 (0.688)
: dataset TMVA_DNN_CPU : 0.030 (0.085) 0.175 (0.495) 0.472 (0.794)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m