Running with nthreads = 4
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree sig_tree of type Signal with 1000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree bkg_tree of type Background with 1000 events
Factory : Booking method: ␛[1mBDT␛[0m
:
: Rebuilding Dataset dataset
: Building event vectors for type 2 Signal
: Dataset[dataset] : create input formulas for tree sig_tree
: Using variable vars[0] from array expression vars of size 256
: Building event vectors for type 2 Background
: Dataset[dataset] : create input formulas for tree bkg_tree
: Using variable vars[0] from array expression vars of size 256
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 800
: Signal -- testing events : 200
: Signal -- training and testing events: 1000
: Background -- training events : 800
: Background -- testing events : 200
: Background -- training and testing events: 1000
:
Factory : Booking method: ␛[1mTMVA_DNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:Layout=DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: Layout: "DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,BNORM,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: InputLayout: "0|0|0" [The Layout of the input]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : Booking method: ␛[1mTMVA_CNN_CPU␛[0m
:
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: <none>
: - Default:
: Boost_num: "0" [Number of times the classifier will be boosted]
: Parsing option string:
: ... "!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=None:WeightInitialization=XAVIER:InputLayout=1|16|16:Layout=CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR:TrainingStrategy=LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10:Architecture=CPU"
: The following options are set:
: - By User:
: V: "True" [Verbose output (short form of "VerbosityLevel" below - overrides the latter one)]
: VarTransform: "None" [List of variable transformations performed before training, e.g., "D_Background,P_Signal,G,N_AllClasses" for: "Decorrelation, PCA-transformation, Gaussianisation, Normalisation, each for the given class of events ('AllClasses' denotes all events of all classes, if no class indication is given, 'All' is assumed)"]
: H: "False" [Print method-specific help message]
: InputLayout: "1|16|16" [The Layout of the input]
: Layout: "CONV|10|3|3|1|1|1|1|RELU,BNORM,CONV|10|3|3|1|1|1|1|RELU,MAXPOOL|2|2|1|1,RESHAPE|FLAT,DENSE|100|RELU,DENSE|1|LINEAR" [Layout of the network.]
: ErrorStrategy: "CROSSENTROPY" [Loss function: Mean squared error (regression) or cross entropy (binary classification).]
: WeightInitialization: "XAVIER" [Weight initialization strategy]
: Architecture: "CPU" [Which architecture to perform the training on.]
: TrainingStrategy: "LearningRate=1e-3,Momentum=0.9,Repetitions=1,ConvergenceSteps=5,BatchSize=100,TestRepetitions=1,WeightDecay=1e-4,Regularization=None,Optimizer=ADAM,DropConfig=0.0+0.0+0.0+0.0,MaxEpochs=10" [Defines the training strategies.]
: - Default:
: VerbosityLevel: "Default" [Verbosity level]
: CreateMVAPdfs: "False" [Create PDFs for classifier outputs (signal and background)]
: IgnoreNegWeightsInTraining: "False" [Events with negative weights are ignored in the training (but are included for testing and performance evaluation)]
: BatchLayout: "0|0|0" [The Layout of the batch]
: RandomSeed: "0" [Random seed used for weight initialization and batch shuffling]
: ValidationSize: "20%" [Part of the training data to use for validation. Specify as 0.2 or 20% to use a fifth of the data set as validation set. Specify as 100 to use exactly 100 events. (Default: 20%)]
: Will now use the CPU architecture with BLAS and IMT support !
Factory : ␛[1mTrain all methods␛[0m
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 800 bkg: 800
: #events: (unweighted) sig: 800 bkg: 800
: Training 400 Decision Trees ... patience please
: Elapsed time for training with 1600 events: 1.39 sec
BDT : [dataset] : Evaluation of BDT on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.015 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.class.C␛[0m
: TMVA_CNN_ClassificationOutput.root:/dataset/Method_BDT/BDT
Factory : Training finished
:
Factory : Train method: TMVA_DNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 8 Input = ( 1, 1, 256 ) Batch size = 100 Loss function = C
Layer 0 DENSE Layer: ( Input = 256 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 2 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 3 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 4 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 5 BATCH NORM Layer: Input/Output = ( 100 , 100 , 1 ) Norm dim = 100 axis = -1
Layer 6 DENSE Layer: ( Input = 100 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 7 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 23.7037
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 0.951755 0.896754 0.121479 0.0157265 11347.2 0
: 2 Minimum Test error found - save the configuration
: 2 | 0.687343 0.832028 0.158111 0.0171661 8513.96 0
: 3 | 0.575201 0.86542 0.119609 0.0107199 11020.4 1
: 4 Minimum Test error found - save the configuration
: 4 | 0.506169 0.79488 0.110307 0.0113583 12127.4 0
: 5 | 0.46365 0.79987 0.11118 0.0117822 12072.8 1
: 6 | 0.409284 0.833022 0.109253 0.0111021 12226 2
: 7 Minimum Test error found - save the configuration
: 7 | 0.356697 0.752686 0.110801 0.0111867 12046.4 0
: 8 | 0.288571 0.760379 0.1096 0.0108266 12149.1 1
: 9 | 0.27746 0.781935 0.116991 0.0103614 11253.9 2
: 10 | 0.247537 0.840598 0.119683 0.0109314 11034.3 3
:
: Elapsed time for training with 1600 events: 1.21 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.0555 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.class.C␛[0m
Factory : Training finished
:
Factory : Train method: TMVA_CNN_CPU for Classification
:
: Start of deep neural network training on CPU using MT, nthreads = 4
:
: ***** Deep Learning Network *****
DEEP NEURAL NETWORK: Depth = 7 Input = ( 1, 16, 16 ) Batch size = 100 Loss function = C
Layer 0 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 1 BATCH NORM Layer: Input/Output = ( 10 , 256 , 100 ) Norm dim = 10 axis = 1
Layer 2 CONV LAYER: ( W = 16 , H = 16 , D = 10 ) Filter ( W = 3 , H = 3 ) Output = ( 100 , 10 , 10 , 256 ) Activation Function = Relu
Layer 3 POOL Layer: ( W = 15 , H = 15 , D = 10 ) Filter ( W = 2 , H = 2 ) Output = ( 100 , 10 , 10 , 225 )
Layer 4 RESHAPE Layer Input = ( 10 , 15 , 15 ) Output = ( 1 , 100 , 2250 )
Layer 5 DENSE Layer: ( Input = 2250 , Width = 100 ) Output = ( 1 , 100 , 100 ) Activation Function = Relu
Layer 6 DENSE Layer: ( Input = 100 , Width = 1 ) Output = ( 1 , 100 , 1 ) Activation Function = Identity
: Using 1280 events for training and 320 for testing
: Compute initial loss on the validation data
: Training phase 1 of 1: Optimizer ADAM (beta1=0.9,beta2=0.999,eps=1e-07) Learning rate = 0.001 regularization 0 minimum error = 54.488
: --------------------------------------------------------------
: Epoch | Train Err. Val. Err. t(s)/epoch t(s)/Loss nEvents/s Conv. Steps
: --------------------------------------------------------------
: Start epoch iteration ...
: 1 Minimum Test error found - save the configuration
: 1 | 5.02138 2.36109 0.908845 0.0773827 1443.24 0
: 2 Minimum Test error found - save the configuration
: 2 | 1.35292 0.986533 0.950699 0.0757939 1371.58 0
: 3 Minimum Test error found - save the configuration
: 3 | 0.849595 0.789456 0.875493 0.0767357 1502.33 0
: 4 | 0.779603 0.842854 0.918595 0.0694719 1413.22 1
: 5 | 0.756106 0.856182 0.918302 0.0722547 1418.36 2
: 6 Minimum Test error found - save the configuration
: 6 | 0.718435 0.731386 0.904662 0.0699757 1437.67 0
: 7 Minimum Test error found - save the configuration
: 7 | 0.687804 0.707685 0.830236 0.0707435 1580 0
: 8 Minimum Test error found - save the configuration
: 8 | 0.667049 0.692998 0.860092 0.071659 1522.01 0
: 9 | 0.656411 0.694705 0.866879 0.0720608 1509.78 1
: 10 Minimum Test error found - save the configuration
: 10 | 0.650468 0.692702 0.849873 0.071733 1542.14 0
:
: Elapsed time for training with 1600 events: 8.96 sec
: Evaluate deep neural network on CPU using batches with size = 100
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on training sample (1600 events)
: Elapsed time for evaluation of 1600 events: 0.389 sec
: Creating xml weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
: Creating standalone class: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.class.C␛[0m
Factory : Training finished
:
: Ranking input variables (method specific)...
BDT : Ranking result (top variable is best ranked)
: --------------------------------------
: Rank : Variable : Variable Importance
: --------------------------------------
: 1 : vars : 9.579e-03
: 2 : vars : 9.560e-03
: 3 : vars : 8.578e-03
: 4 : vars : 8.191e-03
: 5 : vars : 8.098e-03
: 6 : vars : 7.971e-03
: 7 : vars : 7.855e-03
: 8 : vars : 7.827e-03
: 9 : vars : 7.755e-03
: 10 : vars : 7.638e-03
: 11 : vars : 7.595e-03
: 12 : vars : 7.448e-03
: 13 : vars : 7.355e-03
: 14 : vars : 7.178e-03
: 15 : vars : 6.846e-03
: 16 : vars : 6.794e-03
: 17 : vars : 6.753e-03
: 18 : vars : 6.644e-03
: 19 : vars : 6.613e-03
: 20 : vars : 6.560e-03
: 21 : vars : 6.518e-03
: 22 : vars : 6.516e-03
: 23 : vars : 6.454e-03
: 24 : vars : 6.419e-03
: 25 : vars : 6.405e-03
: 26 : vars : 6.364e-03
: 27 : vars : 6.361e-03
: 28 : vars : 6.323e-03
: 29 : vars : 6.322e-03
: 30 : vars : 6.220e-03
: 31 : vars : 6.165e-03
: 32 : vars : 6.132e-03
: 33 : vars : 6.126e-03
: 34 : vars : 6.117e-03
: 35 : vars : 6.058e-03
: 36 : vars : 6.051e-03
: 37 : vars : 6.050e-03
: 38 : vars : 6.040e-03
: 39 : vars : 6.033e-03
: 40 : vars : 6.017e-03
: 41 : vars : 5.985e-03
: 42 : vars : 5.966e-03
: 43 : vars : 5.952e-03
: 44 : vars : 5.934e-03
: 45 : vars : 5.904e-03
: 46 : vars : 5.843e-03
: 47 : vars : 5.805e-03
: 48 : vars : 5.785e-03
: 49 : vars : 5.709e-03
: 50 : vars : 5.696e-03
: 51 : vars : 5.688e-03
: 52 : vars : 5.678e-03
: 53 : vars : 5.595e-03
: 54 : vars : 5.594e-03
: 55 : vars : 5.577e-03
: 56 : vars : 5.563e-03
: 57 : vars : 5.556e-03
: 58 : vars : 5.539e-03
: 59 : vars : 5.344e-03
: 60 : vars : 5.272e-03
: 61 : vars : 5.257e-03
: 62 : vars : 5.215e-03
: 63 : vars : 5.159e-03
: 64 : vars : 5.129e-03
: 65 : vars : 5.113e-03
: 66 : vars : 5.113e-03
: 67 : vars : 5.095e-03
: 68 : vars : 5.081e-03
: 69 : vars : 5.057e-03
: 70 : vars : 5.021e-03
: 71 : vars : 5.000e-03
: 72 : vars : 4.972e-03
: 73 : vars : 4.886e-03
: 74 : vars : 4.844e-03
: 75 : vars : 4.805e-03
: 76 : vars : 4.803e-03
: 77 : vars : 4.799e-03
: 78 : vars : 4.797e-03
: 79 : vars : 4.788e-03
: 80 : vars : 4.750e-03
: 81 : vars : 4.734e-03
: 82 : vars : 4.725e-03
: 83 : vars : 4.647e-03
: 84 : vars : 4.599e-03
: 85 : vars : 4.595e-03
: 86 : vars : 4.590e-03
: 87 : vars : 4.574e-03
: 88 : vars : 4.556e-03
: 89 : vars : 4.535e-03
: 90 : vars : 4.498e-03
: 91 : vars : 4.498e-03
: 92 : vars : 4.460e-03
: 93 : vars : 4.430e-03
: 94 : vars : 4.421e-03
: 95 : vars : 4.413e-03
: 96 : vars : 4.392e-03
: 97 : vars : 4.388e-03
: 98 : vars : 4.380e-03
: 99 : vars : 4.351e-03
: 100 : vars : 4.329e-03
: 101 : vars : 4.320e-03
: 102 : vars : 4.315e-03
: 103 : vars : 4.311e-03
: 104 : vars : 4.303e-03
: 105 : vars : 4.296e-03
: 106 : vars : 4.288e-03
: 107 : vars : 4.287e-03
: 108 : vars : 4.286e-03
: 109 : vars : 4.267e-03
: 110 : vars : 4.260e-03
: 111 : vars : 4.241e-03
: 112 : vars : 4.241e-03
: 113 : vars : 4.235e-03
: 114 : vars : 4.226e-03
: 115 : vars : 4.183e-03
: 116 : vars : 4.163e-03
: 117 : vars : 4.161e-03
: 118 : vars : 4.124e-03
: 119 : vars : 4.114e-03
: 120 : vars : 4.110e-03
: 121 : vars : 4.068e-03
: 122 : vars : 4.028e-03
: 123 : vars : 4.012e-03
: 124 : vars : 4.000e-03
: 125 : vars : 3.994e-03
: 126 : vars : 3.977e-03
: 127 : vars : 3.962e-03
: 128 : vars : 3.885e-03
: 129 : vars : 3.884e-03
: 130 : vars : 3.858e-03
: 131 : vars : 3.843e-03
: 132 : vars : 3.838e-03
: 133 : vars : 3.837e-03
: 134 : vars : 3.802e-03
: 135 : vars : 3.795e-03
: 136 : vars : 3.794e-03
: 137 : vars : 3.787e-03
: 138 : vars : 3.787e-03
: 139 : vars : 3.744e-03
: 140 : vars : 3.741e-03
: 141 : vars : 3.696e-03
: 142 : vars : 3.692e-03
: 143 : vars : 3.654e-03
: 144 : vars : 3.650e-03
: 145 : vars : 3.632e-03
: 146 : vars : 3.611e-03
: 147 : vars : 3.603e-03
: 148 : vars : 3.596e-03
: 149 : vars : 3.573e-03
: 150 : vars : 3.567e-03
: 151 : vars : 3.541e-03
: 152 : vars : 3.520e-03
: 153 : vars : 3.513e-03
: 154 : vars : 3.501e-03
: 155 : vars : 3.487e-03
: 156 : vars : 3.457e-03
: 157 : vars : 3.454e-03
: 158 : vars : 3.413e-03
: 159 : vars : 3.383e-03
: 160 : vars : 3.369e-03
: 161 : vars : 3.309e-03
: 162 : vars : 3.308e-03
: 163 : vars : 3.289e-03
: 164 : vars : 3.284e-03
: 165 : vars : 3.273e-03
: 166 : vars : 3.242e-03
: 167 : vars : 3.237e-03
: 168 : vars : 3.207e-03
: 169 : vars : 3.144e-03
: 170 : vars : 3.142e-03
: 171 : vars : 3.131e-03
: 172 : vars : 3.115e-03
: 173 : vars : 3.108e-03
: 174 : vars : 3.079e-03
: 175 : vars : 3.033e-03
: 176 : vars : 3.030e-03
: 177 : vars : 3.005e-03
: 178 : vars : 3.003e-03
: 179 : vars : 2.979e-03
: 180 : vars : 2.964e-03
: 181 : vars : 2.940e-03
: 182 : vars : 2.924e-03
: 183 : vars : 2.903e-03
: 184 : vars : 2.875e-03
: 185 : vars : 2.874e-03
: 186 : vars : 2.867e-03
: 187 : vars : 2.851e-03
: 188 : vars : 2.808e-03
: 189 : vars : 2.788e-03
: 190 : vars : 2.775e-03
: 191 : vars : 2.763e-03
: 192 : vars : 2.762e-03
: 193 : vars : 2.750e-03
: 194 : vars : 2.747e-03
: 195 : vars : 2.735e-03
: 196 : vars : 2.721e-03
: 197 : vars : 2.697e-03
: 198 : vars : 2.694e-03
: 199 : vars : 2.670e-03
: 200 : vars : 2.668e-03
: 201 : vars : 2.660e-03
: 202 : vars : 2.651e-03
: 203 : vars : 2.630e-03
: 204 : vars : 2.599e-03
: 205 : vars : 2.592e-03
: 206 : vars : 2.500e-03
: 207 : vars : 2.414e-03
: 208 : vars : 2.375e-03
: 209 : vars : 2.349e-03
: 210 : vars : 2.319e-03
: 211 : vars : 2.309e-03
: 212 : vars : 2.293e-03
: 213 : vars : 2.253e-03
: 214 : vars : 2.201e-03
: 215 : vars : 2.067e-03
: 216 : vars : 2.049e-03
: 217 : vars : 2.016e-03
: 218 : vars : 2.007e-03
: 219 : vars : 1.987e-03
: 220 : vars : 1.986e-03
: 221 : vars : 1.860e-03
: 222 : vars : 1.752e-03
: 223 : vars : 1.725e-03
: 224 : vars : 1.592e-03
: 225 : vars : 1.550e-03
: 226 : vars : 1.531e-03
: 227 : vars : 1.472e-03
: 228 : vars : 1.462e-03
: 229 : vars : 1.340e-03
: 230 : vars : 1.331e-03
: 231 : vars : 1.260e-03
: 232 : vars : 1.119e-03
: 233 : vars : 1.041e-03
: 234 : vars : 8.289e-04
: 235 : vars : 5.939e-04
: 236 : vars : 0.000e+00
: 237 : vars : 0.000e+00
: 238 : vars : 0.000e+00
: 239 : vars : 0.000e+00
: 240 : vars : 0.000e+00
: 241 : vars : 0.000e+00
: 242 : vars : 0.000e+00
: 243 : vars : 0.000e+00
: 244 : vars : 0.000e+00
: 245 : vars : 0.000e+00
: 246 : vars : 0.000e+00
: 247 : vars : 0.000e+00
: 248 : vars : 0.000e+00
: 249 : vars : 0.000e+00
: 250 : vars : 0.000e+00
: 251 : vars : 0.000e+00
: 252 : vars : 0.000e+00
: 253 : vars : 0.000e+00
: 254 : vars : 0.000e+00
: 255 : vars : 0.000e+00
: 256 : vars : 0.000e+00
: --------------------------------------
: No variable ranking supplied by classifier: TMVA_DNN_CPU
: No variable ranking supplied by classifier: TMVA_CNN_CPU
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_trainingError, Entries= 0, Total sum= 4.76367
TH1.Print Name = TrainingHistory_TMVA_DNN_CPU_valError, Entries= 0, Total sum= 8.15757
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_trainingError, Entries= 0, Total sum= 12.1398
TH1.Print Name = TrainingHistory_TMVA_CNN_CPU_valError, Entries= 0, Total sum= 9.35559
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_BDT.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_DNN_CPU.weights.xml␛[0m
: Reading weight file: ␛[0;36mdataset/weights/TMVA_CNN_Classification_TMVA_CNN_CPU.weights.xml␛[0m
Factory : ␛[1mTest all methods␛[0m
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.00365 sec
Factory : Test method: TMVA_DNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_DNN_CPU : [dataset] : Evaluation of TMVA_DNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0135 sec
Factory : Test method: TMVA_CNN_CPU for Classification performance
:
: Evaluate deep neural network on CPU using batches with size = 400
:
TMVA_CNN_CPU : [dataset] : Evaluation of TMVA_CNN_CPU on testing sample (400 events)
: Elapsed time for evaluation of 400 events: 0.0995 sec
Factory : ␛[1mEvaluate all methods␛[0m
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_DNN_CPU
:
TMVA_DNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
Factory : Evaluate classifier: TMVA_CNN_CPU
:
TMVA_CNN_CPU : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Evaluate deep neural network on CPU using batches with size = 1000
:
: Dataset[dataset] : variable plots are not produces ! The number of variables is 256 , it is larger than 200
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset BDT : 0.749
: dataset TMVA_DNN_CPU : 0.673
: dataset TMVA_CNN_CPU : 0.557
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset BDT : 0.155 (0.385) 0.381 (0.645) 0.635 (0.890)
: dataset TMVA_DNN_CPU : 0.010 (0.085) 0.245 (0.585) 0.545 (0.772)
: dataset TMVA_CNN_CPU : 0.007 (0.011) 0.108 (0.185) 0.385 (0.475)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 400 events
:
Dataset:dataset : Created tree 'TrainTree' with 1600 events
:
Factory : ␛[1mThank you for using TMVA!␛[0m
: ␛[1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html␛[0m