#include "TMatrixD.h"

TMatrixD


class description - source file - inheritance tree (.pdf)

class TMatrixD : public TMatrixDBase

Inheritance Chart:
TObject
<-
TMatrixDBase
<-
TMatrixD

    protected:
virtual void Allocate(Int_t nrows, Int_t ncols, Int_t row_lwb = 0, Int_t col_lwb = 0, Int_t init = 0, Int_t nr_nonzeros = -1) void AMultB(const TMatrixD& a, const TMatrixD& b, Int_t constr = 1) void AMultB(const TMatrixD& a, const TMatrixDSym& b, Int_t constr = 1) void AMultB(const TMatrixDSym& a, const TMatrixD& b, Int_t constr = 1) void AMultB(const TMatrixDSym& a, const TMatrixDSym& b, Int_t constr = 1) void AMultBt(const TMatrixD& a, const TMatrixD& b, Int_t constr = 1) void AMultBt(const TMatrixD& a, const TMatrixDSym& b, Int_t constr = 1) void AMultBt(const TMatrixDSym& a, const TMatrixD& b, Int_t constr = 1) void AMultBt(const TMatrixDSym& a, const TMatrixDSym& b, Int_t constr = 1) void AtMultB(const TMatrixD& a, const TMatrixD& b, Int_t constr = 1) void AtMultB(const TMatrixD& a, const TMatrixDSym& b, Int_t constr = 1) void AtMultB(const TMatrixDSym& a, const TMatrixD& b, Int_t constr = 1) void AtMultB(const TMatrixDSym& a, const TMatrixDSym& b, Int_t constr = 1) void Delete_m(Int_t size, Double_t*&) Int_t Memcpy_m(Double_t* newp, const Double_t* oldp, Int_t copySize, Int_t newSize, Int_t oldSize) Double_t* New_m(Int_t size) public:
TMatrixD() TMatrixD(Int_t nrows, Int_t ncols) TMatrixD(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb) TMatrixD(Int_t nrows, Int_t ncols, const Double_t* data, Option_t* option = "") TMatrixD(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, const Double_t* data, Option_t* option = "") TMatrixD(const TMatrixD& another) TMatrixD(const TMatrixF& another) TMatrixD(const TMatrixDSym& another) TMatrixD(const TMatrixDSparse& another) TMatrixD(TMatrixDBase::EMatrixCreatorsOp1 op, const TMatrixD& prototype) TMatrixD(const TMatrixD& a, TMatrixDBase::EMatrixCreatorsOp2 op, const TMatrixD& b) TMatrixD(const TMatrixD& a, TMatrixDBase::EMatrixCreatorsOp2 op, const TMatrixDSym& b) TMatrixD(const TMatrixDSym& a, TMatrixDBase::EMatrixCreatorsOp2 op, const TMatrixD& b) TMatrixD(const TMatrixDSym& a, TMatrixDBase::EMatrixCreatorsOp2 op, const TMatrixDSym& b) TMatrixD(const TMatrixDLazy& lazy_constructor) TMatrixD GetSub(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Option_t* option = "S") const const TMatrixD EigenVectors(TVectorD& eigenValues) const virtual ~TMatrixD() static TClass* Class() virtual void Clear(Option_t* = "") virtual Double_t Determinant() const virtual void Determinant(Double_t& d1, Double_t& d2) const virtual const Int_t* GetColIndexArray() const virtual Int_t* GetColIndexArray() virtual const Double_t* GetMatrixArray() const virtual Double_t* GetMatrixArray() virtual const Int_t* GetRowIndexArray() const virtual Int_t* GetRowIndexArray() virtual TMatrixDBase& GetSub(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, TMatrixDBase& target, Option_t* option = "S") const TMatrixD& Invert(Double_t* det = 0) TMatrixD& InvertFast(Double_t* det = 0) virtual TClass* IsA() const void Mult(const TMatrixD& a, const TMatrixD& b) void Mult(const TMatrixD& a, const TMatrixDSym& b) void Mult(const TMatrixDSym& a, const TMatrixD& b) TMatrixD& NormByColumn(const TVectorD& v, Option_t* option = "D") TMatrixD& NormByRow(const TVectorD& v, Option_t* option = "D") virtual Double_t operator()(Int_t rown, Int_t coln) const virtual Double_t& operator()(Int_t rown, Int_t coln) TMatrixD& operator*=(Double_t val) TMatrixD& operator*=(const TMatrixD& source) TMatrixD& operator*=(const TMatrixDSym& source) TMatrixD& operator*=(const TMatrixDDiag_const& diag) TMatrixD& operator*=(const TMatrixDRow_const& row) TMatrixD& operator*=(const TMatrixDColumn_const& col) TMatrixD& operator+=(Double_t val) TMatrixD& operator+=(const TMatrixD& source) TMatrixD& operator+=(const TMatrixDSym& source) TMatrixD& operator-=(Double_t val) TMatrixD& operator-=(const TMatrixD& source) TMatrixD& operator-=(const TMatrixDSym& source) TMatrixD& operator/=(const TMatrixDDiag_const& diag) TMatrixD& operator/=(const TMatrixDRow_const& row) TMatrixD& operator/=(const TMatrixDColumn_const& col) TMatrixD& operator=(const TMatrixD& source) TMatrixD& operator=(const TMatrixF& source) TMatrixD& operator=(const TMatrixDSym& source) TMatrixD& operator=(const TMatrixDSparse& source) TMatrixD& operator=(const TMatrixDLazy& source) TMatrixD& operator=(Double_t val) const TMatrixDRow_const operator[](Int_t rown) const TMatrixDRow operator[](Int_t rown) TMatrixD& Rank1Update(const TVectorD& v, Double_t alpha = 1.0) TMatrixD& Rank1Update(const TVectorD& v1, const TVectorD& v2, Double_t alpha = 1.0) virtual TMatrixDBase& ResizeTo(Int_t nrows, Int_t ncols, Int_t nr_nonzeros = -1) virtual TMatrixDBase& ResizeTo(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Int_t nr_nonzeros = -1) TMatrixDBase& ResizeTo(const TMatrixD& m) virtual TMatrixDBase& SetColIndexArray(Int_t*) virtual TMatrixDBase& SetRowIndexArray(Int_t*) virtual TMatrixDBase& SetSub(Int_t row_lwb, Int_t col_lwb, const TMatrixDBase& source) virtual void ShowMembers(TMemberInspector& insp, char* parent) virtual void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b) TMatrixD& T() TMatrixD& Transpose(const TMatrixD& source) TMatrixD& Use(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Double_t* data) TMatrixD& Use(Int_t nrows, Int_t ncols, Double_t* data) TMatrixD& Use(TMatrixD& a)

Data Members


    protected:
Double_t fDataStack[25] ! data container Double_t* fElements [fNelems] elements themselves

Class Description

                                                                      
 TMatrixD                                                             
                                                                      
 Implementation of a general matrix in the linear algebra package     
                                                                      


TMatrixD(Int_t no_rows,Int_t no_cols)

TMatrixD(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb)

TMatrixD(Int_t no_rows,Int_t no_cols,const Double_t *elements,Option_t *option)
 option="F": array elements contains the matrix stored column-wise
             like in Fortran, so a[i,j] = elements[i+no_rows*j],
 else        it is supposed that array elements are stored row-wise
             a[i,j] = elements[i*no_cols+j]

 array elements are copied

TMatrixD(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb, const Double_t *elements,Option_t *option)
 array elements are copied

TMatrixD(const TMatrixD &another) : TMatrixDBase(another)

TMatrixD(const TMatrixF &another)

TMatrixD(const TMatrixDSym &another)

TMatrixD(const TMatrixDSparse &another)

TMatrixD(EMatrixCreatorsOp1 op,const TMatrixD &prototype)
 Create a matrix applying a specific operation to the prototype.
 Example: TMatrixD a(10,12); ...; TMatrixD b(TMatrixDBase::kTransposed, a);
 Supported operations are: kZero, kUnit, kTransposed, kInverted and kAtA.

TMatrixD(const TMatrixD &a,EMatrixCreatorsOp2 op,const TMatrixD &b)
 Create a matrix applying a specific operation to two prototypes.
 Example: TMatrixD a(10,12), b(12,5); ...; TMatrixD c(a, TMatrixDBase::kMult, b);
 Supported operations are: kMult (a*b), kTransposeMult (a'*b), kInvMult (a^(-1)*b)

TMatrixD(const TMatrixD &a,EMatrixCreatorsOp2 op,const TMatrixDSym &b)

TMatrixD(const TMatrixDSym &a,EMatrixCreatorsOp2 op,const TMatrixD &b)

TMatrixD(const TMatrixDSym &a,EMatrixCreatorsOp2 op,const TMatrixDSym &b)

TMatrixD(const TMatrixDLazy &lazy_constructor)

void Delete_m(Int_t size,Double_t *&m)
 delete data pointer m, if it was assigned on the heap

Double_t* New_m(Int_t size)
 return data pointer . if requested size <= kSizeMax, assign pointer
 to the stack space

Int_t Memcpy_m(Double_t *newp,const Double_t *oldp,Int_t copySize, Int_t newSize,Int_t oldSize)
 copy copySize doubles from *oldp to *newp . However take care of the
 situation where both pointers are assigned to the same stack space

void Allocate(Int_t no_rows,Int_t no_cols,Int_t row_lwb,Int_t col_lwb, Int_t init,Int_t /*nr_nonzeros*/)
 Allocate new matrix. Arguments are number of rows, columns, row
 lowerbound (0 default) and column lowerbound (0 default).

void AMultB(const TMatrixD &a,const TMatrixD &b,Int_t constr)
 General matrix multiplication. Create a matrix C such that C = A * B.
 Note, matrix C is allocated for constr=1.

void AMultB(const TMatrixDSym &a,const TMatrixD &b,Int_t constr)
 Matrix multiplication, with A symmetric and B general.
 Create a matrix C such that C = A * B.
 Note, matrix C is allocated for constr=1.

void AMultB(const TMatrixD &a,const TMatrixDSym &b,Int_t constr)
 Matrix multiplication, with A general and B symmetric.
 Create a matrix C such that C = A * B.
 Note, matrix C is allocated for constr=1.

void AMultB(const TMatrixDSym &a,const TMatrixDSym &b,Int_t constr)
 Matrix multiplication, with A symmetric and B symmetric.
 (Actually copied for the moment routine for B general)
 Create a matrix C such that C = A * B.
 Note, matrix C is allocated for constr=1.

void AtMultB(const TMatrixD &a,const TMatrixD &b,Int_t constr)
 Create a matrix C such that C = A' * B. In other words,
 c[i,j] = SUM{ a[k,i] * b[k,j] }. Note, matrix C is allocated for constr=1.

void AtMultB(const TMatrixD &a,const TMatrixDSym &b,Int_t constr)
 Create a matrix C such that C = A' * B. In other words,
 c[i,j] = SUM{ a[k,i] * b[k,j] }. Note, matrix C is allocated for constr=1.

void AMultBt(const TMatrixD &a,const TMatrixD &b,Int_t constr)
 General matrix multiplication. Create a matrix C such that C = A * B^T.
 Note, matrix C is allocated for constr=1.

void AMultBt(const TMatrixDSym &a,const TMatrixD &b,Int_t constr)
 Matrix multiplication, with A symmetric and B general.
 Create a matrix C such that C = A * B^T.
 Note, matrix C is allocated for constr=1.

TMatrixD& Use(Int_t row_lwb,Int_t row_upb, Int_t col_lwb,Int_t col_upb,Double_t *data)

TMatrixDBase& GetSub(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb, TMatrixDBase &target,Option_t *option) const
 Get submatrix [row_lwb..row_upb][col_lwb..col_upb]; The indexing range of the
 returned matrix depends on the argument option:

 option == "S" : return [0..row_upb-row_lwb+1][0..col_upb-col_lwb+1] (default)
 else          : return [row_lwb..row_upb][col_lwb..col_upb]

TMatrixDBase& SetSub(Int_t row_lwb,Int_t col_lwb,const TMatrixDBase &source)
 Insert matrix source starting at [row_lwb][col_lwb], thereby overwriting the part
 [row_lwb..row_lwb+nrows_source][col_lwb..col_lwb+ncols_source];

TMatrixDBase& ResizeTo(Int_t nrows,Int_t ncols,Int_t /*nr_nonzeros*/)
 Set size of the matrix to nrows x ncols
 New dynamic elements are created, the overlapping part of the old ones are
 copied to the new structures, then the old elements are deleted.

TMatrixDBase& ResizeTo(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb, Int_t /*nr_nonzeros*/)
 Set size of the matrix to [row_lwb:row_upb] x [col_lwb:col_upb]
 New dynamic elemenst are created, the overlapping part of the old ones are
 copied to the new structures, then the old elements are deleted.

Double_t Determinant() const

void Determinant(Double_t &d1,Double_t &d2) const

TMatrixD& Invert(Double_t *det)
 Invert the matrix and calculate its determinant

TMatrixD& InvertFast(Double_t *det)
 Invert the matrix and calculate its determinant

TMatrixD& Transpose(const TMatrixD &source)
 Transpose a matrix.

TMatrixD& Rank1Update(const TVectorD &v,Double_t alpha)
 Perform a rank 1 operation on the matrix:
     A += alpha * v * v^T

TMatrixD& Rank1Update(const TVectorD &v1,const TVectorD &v2,Double_t alpha)
 Perform a rank 1 operation on the matrix:
     A += alpha * v1 * v2^T

TMatrixD& NormByColumn(const TVectorD &v,Option_t *option)
 Multiply/divide matrix columns by a vector:
 option:
 "D"   :  b(i,j) = a(i,j)/v(i)   i = 0,fNrows-1 (default)
 else  :  b(i,j) = a(i,j)*v(i)

TMatrixD& NormByRow(const TVectorD &v,Option_t *option)
 Multiply/divide matrix rows with a vector:
 option:
 "D"   :  b(i,j) = a(i,j)/v(j)   i = 0,fNcols-1 (default)
 else  :  b(i,j) = a(i,j)*v(j)

const TMatrixD EigenVectors(TVectorD &eigenValues) const
 Return a matrix containing the eigen-vectors ordered by descending values
 of Re^2+Im^2 of the complex eigen-values .
 If the matrix is asymmetric, only the real part of the eigen-values is
 returned . For full functionality use TMatrixDEigen .

void Streamer(TBuffer &R__b)
 Stream an object of class TMatrixD.



Inline Functions


                           void ~TMatrixD()
                           void AtMultB(const TMatrixDSym& a, const TMatrixD& b, Int_t constr = 1)
                           void AtMultB(const TMatrixDSym& a, const TMatrixDSym& b, Int_t constr = 1)
                           void AMultBt(const TMatrixDSym& a, const TMatrixD& b, Int_t constr = 1)
                           void AMultBt(const TMatrixDSym& a, const TMatrixDSym& b, Int_t constr = 1)
                       TMatrixD TMatrixD(const TMatrixDLazy& lazy_constructor)
                const Double_t* GetMatrixArray() const
                      Double_t* GetMatrixArray()
                   const Int_t* GetRowIndexArray() const
                         Int_t* GetRowIndexArray()
                   const Int_t* GetColIndexArray() const
                         Int_t* GetColIndexArray()
                  TMatrixDBase& SetRowIndexArray(Int_t*)
                  TMatrixDBase& SetColIndexArray(Int_t*)
                           void Clear(Option_t* = "")
                      TMatrixD& Use(Int_t nrows, Int_t ncols, Double_t* data)
                      TMatrixD& Use(TMatrixD& a)
                       TMatrixD GetSub(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Option_t* option = "S") const
                  TMatrixDBase& ResizeTo(const TMatrixD& m)
                      TMatrixD& T()
                           void Mult(const TMatrixD& a, const TMatrixD& b)
                           void Mult(const TMatrixD& a, const TMatrixDSym& b)
                           void Mult(const TMatrixDSym& a, const TMatrixD& b)
                       Double_t operator()(Int_t rown, Int_t coln) const
                      Double_t& operator()(Int_t rown, Int_t coln)
        const TMatrixDRow_const operator[](Int_t rown) const
                    TMatrixDRow operator[](Int_t rown)
                      TMatrixD& operator=(const TMatrixD& source)
                      TMatrixD& operator=(const TMatrixF& source)
                      TMatrixD& operator=(const TMatrixDSym& source)
                      TMatrixD& operator=(const TMatrixDSparse& source)
                      TMatrixD& operator=(const TMatrixDLazy& source)
                      TMatrixD& operator=(Double_t val)
                      TMatrixD& operator-=(Double_t val)
                      TMatrixD& operator+=(Double_t val)
                      TMatrixD& operator*=(Double_t val)
                      TMatrixD& operator+=(const TMatrixD& source)
                      TMatrixD& operator+=(const TMatrixDSym& source)
                      TMatrixD& operator-=(const TMatrixD& source)
                      TMatrixD& operator-=(const TMatrixDSym& source)
                      TMatrixD& operator*=(const TMatrixD& source)
                      TMatrixD& operator*=(const TMatrixDSym& source)
                      TMatrixD& operator*=(const TMatrixDDiag_const& diag)
                      TMatrixD& operator/=(const TMatrixDDiag_const& diag)
                      TMatrixD& operator*=(const TMatrixDRow_const& row)
                      TMatrixD& operator/=(const TMatrixDRow_const& row)
                      TMatrixD& operator*=(const TMatrixDColumn_const& col)
                      TMatrixD& operator/=(const TMatrixDColumn_const& col)
                        TClass* Class()
                        TClass* IsA() const
                           void ShowMembers(TMemberInspector& insp, char* parent)
                           void StreamerNVirtual(TBuffer& b)


Last update: root/matrix:$Name: $:$Id: TMatrixD.cxx,v 1.80 2005/04/05 12:47:11 brun Exp $
Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.