TMatrixD
class description - source file - inheritance tree (.pdf)
protected:
virtual void Allocate(Int_t nrows, Int_t ncols, Int_t row_lwb = 0, Int_t col_lwb = 0, Int_t init = 0, Int_t nr_nonzeros = -1)
void AMultB(const TMatrixD& a, const TMatrixD& b, Int_t constr = 1)
void AMultB(const TMatrixD& a, const TMatrixDSym& b, Int_t constr = 1)
void AMultB(const TMatrixDSym& a, const TMatrixD& b, Int_t constr = 1)
void AMultB(const TMatrixDSym& a, const TMatrixDSym& b, Int_t constr = 1)
void AMultBt(const TMatrixD& a, const TMatrixD& b, Int_t constr = 1)
void AMultBt(const TMatrixD& a, const TMatrixDSym& b, Int_t constr = 1)
void AMultBt(const TMatrixDSym& a, const TMatrixD& b, Int_t constr = 1)
void AMultBt(const TMatrixDSym& a, const TMatrixDSym& b, Int_t constr = 1)
void AtMultB(const TMatrixD& a, const TMatrixD& b, Int_t constr = 1)
void AtMultB(const TMatrixD& a, const TMatrixDSym& b, Int_t constr = 1)
void AtMultB(const TMatrixDSym& a, const TMatrixD& b, Int_t constr = 1)
void AtMultB(const TMatrixDSym& a, const TMatrixDSym& b, Int_t constr = 1)
void Delete_m(Int_t size, Double_t*&)
Int_t Memcpy_m(Double_t* newp, const Double_t* oldp, Int_t copySize, Int_t newSize, Int_t oldSize)
Double_t* New_m(Int_t size)
public:
TMatrixD()
TMatrixD(Int_t nrows, Int_t ncols)
TMatrixD(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb)
TMatrixD(Int_t nrows, Int_t ncols, const Double_t* data, Option_t* option = "")
TMatrixD(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, const Double_t* data, Option_t* option = "")
TMatrixD(const TMatrixD& another)
TMatrixD(const TMatrixF& another)
TMatrixD(const TMatrixDSym& another)
TMatrixD(const TMatrixDSparse& another)
TMatrixD(TMatrixDBase::EMatrixCreatorsOp1 op, const TMatrixD& prototype)
TMatrixD(const TMatrixD& a, TMatrixDBase::EMatrixCreatorsOp2 op, const TMatrixD& b)
TMatrixD(const TMatrixD& a, TMatrixDBase::EMatrixCreatorsOp2 op, const TMatrixDSym& b)
TMatrixD(const TMatrixDSym& a, TMatrixDBase::EMatrixCreatorsOp2 op, const TMatrixD& b)
TMatrixD(const TMatrixDSym& a, TMatrixDBase::EMatrixCreatorsOp2 op, const TMatrixDSym& b)
TMatrixD(const TMatrixDLazy& lazy_constructor)
TMatrixD GetSub(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Option_t* option = "S") const
const TMatrixD EigenVectors(TVectorD& eigenValues) const
virtual ~TMatrixD()
static TClass* Class()
virtual void Clear(Option_t* = "")
virtual Double_t Determinant() const
virtual void Determinant(Double_t& d1, Double_t& d2) const
virtual const Int_t* GetColIndexArray() const
virtual Int_t* GetColIndexArray()
virtual const Double_t* GetMatrixArray() const
virtual Double_t* GetMatrixArray()
virtual const Int_t* GetRowIndexArray() const
virtual Int_t* GetRowIndexArray()
virtual TMatrixDBase& GetSub(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, TMatrixDBase& target, Option_t* option = "S") const
TMatrixD& Invert(Double_t* det = 0)
TMatrixD& InvertFast(Double_t* det = 0)
virtual TClass* IsA() const
void Mult(const TMatrixD& a, const TMatrixD& b)
void Mult(const TMatrixD& a, const TMatrixDSym& b)
void Mult(const TMatrixDSym& a, const TMatrixD& b)
TMatrixD& NormByColumn(const TVectorD& v, Option_t* option = "D")
TMatrixD& NormByRow(const TVectorD& v, Option_t* option = "D")
virtual Double_t operator()(Int_t rown, Int_t coln) const
virtual Double_t& operator()(Int_t rown, Int_t coln)
TMatrixD& operator*=(Double_t val)
TMatrixD& operator*=(const TMatrixD& source)
TMatrixD& operator*=(const TMatrixDSym& source)
TMatrixD& operator*=(const TMatrixDDiag_const& diag)
TMatrixD& operator*=(const TMatrixDRow_const& row)
TMatrixD& operator*=(const TMatrixDColumn_const& col)
TMatrixD& operator+=(Double_t val)
TMatrixD& operator+=(const TMatrixD& source)
TMatrixD& operator+=(const TMatrixDSym& source)
TMatrixD& operator-=(Double_t val)
TMatrixD& operator-=(const TMatrixD& source)
TMatrixD& operator-=(const TMatrixDSym& source)
TMatrixD& operator/=(const TMatrixDDiag_const& diag)
TMatrixD& operator/=(const TMatrixDRow_const& row)
TMatrixD& operator/=(const TMatrixDColumn_const& col)
TMatrixD& operator=(const TMatrixD& source)
TMatrixD& operator=(const TMatrixF& source)
TMatrixD& operator=(const TMatrixDSym& source)
TMatrixD& operator=(const TMatrixDSparse& source)
TMatrixD& operator=(const TMatrixDLazy& source)
TMatrixD& operator=(Double_t val)
const TMatrixDRow_const operator[](Int_t rown) const
TMatrixDRow operator[](Int_t rown)
TMatrixD& Rank1Update(const TVectorD& v, Double_t alpha = 1.0)
TMatrixD& Rank1Update(const TVectorD& v1, const TVectorD& v2, Double_t alpha = 1.0)
virtual TMatrixDBase& ResizeTo(Int_t nrows, Int_t ncols, Int_t nr_nonzeros = -1)
virtual TMatrixDBase& ResizeTo(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Int_t nr_nonzeros = -1)
TMatrixDBase& ResizeTo(const TMatrixD& m)
virtual TMatrixDBase& SetColIndexArray(Int_t*)
virtual TMatrixDBase& SetRowIndexArray(Int_t*)
virtual TMatrixDBase& SetSub(Int_t row_lwb, Int_t col_lwb, const TMatrixDBase& source)
virtual void ShowMembers(TMemberInspector& insp, char* parent)
virtual void Streamer(TBuffer& b)
void StreamerNVirtual(TBuffer& b)
TMatrixD& T()
TMatrixD& Transpose(const TMatrixD& source)
TMatrixD& Use(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Double_t* data)
TMatrixD& Use(Int_t nrows, Int_t ncols, Double_t* data)
TMatrixD& Use(TMatrixD& a)
protected:
Double_t fDataStack[25] ! data container
Double_t* fElements [fNelems] elements themselves
TMatrixD
Implementation of a general matrix in the linear algebra package
TMatrixD(Int_t no_rows,Int_t no_cols)
TMatrixD(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb)
TMatrixD(Int_t no_rows,Int_t no_cols,const Double_t *elements,Option_t *option)
option="F": array elements contains the matrix stored column-wise
like in Fortran, so a[i,j] = elements[i+no_rows*j],
else it is supposed that array elements are stored row-wise
a[i,j] = elements[i*no_cols+j]
array elements are copied
TMatrixD(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,
const Double_t *elements,Option_t *option)
array elements are copied
TMatrixD(const TMatrixD &another) : TMatrixDBase(another)
TMatrixD(const TMatrixF &another)
TMatrixD(const TMatrixDSym &another)
TMatrixD(const TMatrixDSparse &another)
TMatrixD(EMatrixCreatorsOp1 op,const TMatrixD &prototype)
Create a matrix applying a specific operation to the prototype.
Example: TMatrixD a(10,12); ...; TMatrixD b(TMatrixDBase::kTransposed, a);
Supported operations are: kZero, kUnit, kTransposed, kInverted and kAtA.
TMatrixD(const TMatrixD &a,EMatrixCreatorsOp2 op,const TMatrixD &b)
Create a matrix applying a specific operation to two prototypes.
Example: TMatrixD a(10,12), b(12,5); ...; TMatrixD c(a, TMatrixDBase::kMult, b);
Supported operations are: kMult (a*b), kTransposeMult (a'*b), kInvMult (a^(-1)*b)
TMatrixD(const TMatrixD &a,EMatrixCreatorsOp2 op,const TMatrixDSym &b)
TMatrixD(const TMatrixDSym &a,EMatrixCreatorsOp2 op,const TMatrixD &b)
TMatrixD(const TMatrixDSym &a,EMatrixCreatorsOp2 op,const TMatrixDSym &b)
TMatrixD(const TMatrixDLazy &lazy_constructor)
void Delete_m(Int_t size,Double_t *&m)
delete data pointer m, if it was assigned on the heap
Double_t* New_m(Int_t size)
return data pointer . if requested size <= kSizeMax, assign pointer
to the stack space
Int_t Memcpy_m(Double_t *newp,const Double_t *oldp,Int_t copySize,
Int_t newSize,Int_t oldSize)
copy copySize doubles from *oldp to *newp . However take care of the
situation where both pointers are assigned to the same stack space
void Allocate(Int_t no_rows,Int_t no_cols,Int_t row_lwb,Int_t col_lwb,
Int_t init,Int_t /*nr_nonzeros*/)
Allocate new matrix. Arguments are number of rows, columns, row
lowerbound (0 default) and column lowerbound (0 default).
void AMultB(const TMatrixD &a,const TMatrixD &b,Int_t constr)
General matrix multiplication. Create a matrix C such that C = A * B.
Note, matrix C is allocated for constr=1.
void AMultB(const TMatrixDSym &a,const TMatrixD &b,Int_t constr)
Matrix multiplication, with A symmetric and B general.
Create a matrix C such that C = A * B.
Note, matrix C is allocated for constr=1.
void AMultB(const TMatrixD &a,const TMatrixDSym &b,Int_t constr)
Matrix multiplication, with A general and B symmetric.
Create a matrix C such that C = A * B.
Note, matrix C is allocated for constr=1.
void AMultB(const TMatrixDSym &a,const TMatrixDSym &b,Int_t constr)
Matrix multiplication, with A symmetric and B symmetric.
(Actually copied for the moment routine for B general)
Create a matrix C such that C = A * B.
Note, matrix C is allocated for constr=1.
void AtMultB(const TMatrixD &a,const TMatrixD &b,Int_t constr)
Create a matrix C such that C = A' * B. In other words,
c[i,j] = SUM{ a[k,i] * b[k,j] }. Note, matrix C is allocated for constr=1.
void AtMultB(const TMatrixD &a,const TMatrixDSym &b,Int_t constr)
Create a matrix C such that C = A' * B. In other words,
c[i,j] = SUM{ a[k,i] * b[k,j] }. Note, matrix C is allocated for constr=1.
void AMultBt(const TMatrixD &a,const TMatrixD &b,Int_t constr)
General matrix multiplication. Create a matrix C such that C = A * B^T.
Note, matrix C is allocated for constr=1.
void AMultBt(const TMatrixDSym &a,const TMatrixD &b,Int_t constr)
Matrix multiplication, with A symmetric and B general.
Create a matrix C such that C = A * B^T.
Note, matrix C is allocated for constr=1.
TMatrixD& Use(Int_t row_lwb,Int_t row_upb,
Int_t col_lwb,Int_t col_upb,Double_t *data)
TMatrixDBase& GetSub(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,
TMatrixDBase &target,Option_t *option) const
Get submatrix [row_lwb..row_upb][col_lwb..col_upb]; The indexing range of the
returned matrix depends on the argument option:
option == "S" : return [0..row_upb-row_lwb+1][0..col_upb-col_lwb+1] (default)
else : return [row_lwb..row_upb][col_lwb..col_upb]
TMatrixDBase& SetSub(Int_t row_lwb,Int_t col_lwb,const TMatrixDBase &source)
Insert matrix source starting at [row_lwb][col_lwb], thereby overwriting the part
[row_lwb..row_lwb+nrows_source][col_lwb..col_lwb+ncols_source];
TMatrixDBase& ResizeTo(Int_t nrows,Int_t ncols,Int_t /*nr_nonzeros*/)
Set size of the matrix to nrows x ncols
New dynamic elements are created, the overlapping part of the old ones are
copied to the new structures, then the old elements are deleted.
TMatrixDBase& ResizeTo(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,
Int_t /*nr_nonzeros*/)
Set size of the matrix to [row_lwb:row_upb] x [col_lwb:col_upb]
New dynamic elemenst are created, the overlapping part of the old ones are
copied to the new structures, then the old elements are deleted.
Double_t Determinant() const
void Determinant(Double_t &d1,Double_t &d2) const
TMatrixD& Invert(Double_t *det)
Invert the matrix and calculate its determinant
TMatrixD& InvertFast(Double_t *det)
Invert the matrix and calculate its determinant
TMatrixD& Transpose(const TMatrixD &source)
Transpose a matrix.
TMatrixD& Rank1Update(const TVectorD &v,Double_t alpha)
Perform a rank 1 operation on the matrix:
A += alpha * v * v^T
TMatrixD& Rank1Update(const TVectorD &v1,const TVectorD &v2,Double_t alpha)
Perform a rank 1 operation on the matrix:
A += alpha * v1 * v2^T
TMatrixD& NormByColumn(const TVectorD &v,Option_t *option)
Multiply/divide matrix columns by a vector:
option:
"D" : b(i,j) = a(i,j)/v(i) i = 0,fNrows-1 (default)
else : b(i,j) = a(i,j)*v(i)
TMatrixD& NormByRow(const TVectorD &v,Option_t *option)
Multiply/divide matrix rows with a vector:
option:
"D" : b(i,j) = a(i,j)/v(j) i = 0,fNcols-1 (default)
else : b(i,j) = a(i,j)*v(j)
const TMatrixD EigenVectors(TVectorD &eigenValues) const
Return a matrix containing the eigen-vectors ordered by descending values
of Re^2+Im^2 of the complex eigen-values .
If the matrix is asymmetric, only the real part of the eigen-values is
returned . For full functionality use TMatrixDEigen .
void Streamer(TBuffer &R__b)
Stream an object of class TMatrixD.
Inline Functions
void ~TMatrixD()
void AtMultB(const TMatrixDSym& a, const TMatrixD& b, Int_t constr = 1)
void AtMultB(const TMatrixDSym& a, const TMatrixDSym& b, Int_t constr = 1)
void AMultBt(const TMatrixDSym& a, const TMatrixD& b, Int_t constr = 1)
void AMultBt(const TMatrixDSym& a, const TMatrixDSym& b, Int_t constr = 1)
TMatrixD TMatrixD(const TMatrixDLazy& lazy_constructor)
const Double_t* GetMatrixArray() const
Double_t* GetMatrixArray()
const Int_t* GetRowIndexArray() const
Int_t* GetRowIndexArray()
const Int_t* GetColIndexArray() const
Int_t* GetColIndexArray()
TMatrixDBase& SetRowIndexArray(Int_t*)
TMatrixDBase& SetColIndexArray(Int_t*)
void Clear(Option_t* = "")
TMatrixD& Use(Int_t nrows, Int_t ncols, Double_t* data)
TMatrixD& Use(TMatrixD& a)
TMatrixD GetSub(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb, Option_t* option = "S") const
TMatrixDBase& ResizeTo(const TMatrixD& m)
TMatrixD& T()
void Mult(const TMatrixD& a, const TMatrixD& b)
void Mult(const TMatrixD& a, const TMatrixDSym& b)
void Mult(const TMatrixDSym& a, const TMatrixD& b)
Double_t operator()(Int_t rown, Int_t coln) const
Double_t& operator()(Int_t rown, Int_t coln)
const TMatrixDRow_const operator[](Int_t rown) const
TMatrixDRow operator[](Int_t rown)
TMatrixD& operator=(const TMatrixD& source)
TMatrixD& operator=(const TMatrixF& source)
TMatrixD& operator=(const TMatrixDSym& source)
TMatrixD& operator=(const TMatrixDSparse& source)
TMatrixD& operator=(const TMatrixDLazy& source)
TMatrixD& operator=(Double_t val)
TMatrixD& operator-=(Double_t val)
TMatrixD& operator+=(Double_t val)
TMatrixD& operator*=(Double_t val)
TMatrixD& operator+=(const TMatrixD& source)
TMatrixD& operator+=(const TMatrixDSym& source)
TMatrixD& operator-=(const TMatrixD& source)
TMatrixD& operator-=(const TMatrixDSym& source)
TMatrixD& operator*=(const TMatrixD& source)
TMatrixD& operator*=(const TMatrixDSym& source)
TMatrixD& operator*=(const TMatrixDDiag_const& diag)
TMatrixD& operator/=(const TMatrixDDiag_const& diag)
TMatrixD& operator*=(const TMatrixDRow_const& row)
TMatrixD& operator/=(const TMatrixDRow_const& row)
TMatrixD& operator*=(const TMatrixDColumn_const& col)
TMatrixD& operator/=(const TMatrixDColumn_const& col)
TClass* Class()
TClass* IsA() const
void ShowMembers(TMemberInspector& insp, char* parent)
void StreamerNVirtual(TBuffer& b)
Last update: root/matrix:$Name: $:$Id: TMatrixD.cxx,v 1.80 2005/04/05 12:47:11 brun Exp $
Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.