// @(#)root/geom:$Name: $:$Id: TGeoPara.cxx,v 1.25 2005/03/09 18:19:26 brun Exp $
// Author: Andrei Gheata 31/01/02
// TGeoPara::Contains() implemented by Mihaela Gheata
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//_____________________________________________________________________________
// TGeoPara - parallelipeped class. It has 6 parameters :
// dx, dy, dz - half lengths in X, Y, Z
// alpha - angle w.r.t the Y axis from center of low Y edge to
// center of high Y edge [deg]
// theta, phi - polar and azimuthal angles of the segment between
// low and high Z surfaces [deg]
//
//_____________________________________________________________________________
//
//
/*
*/
//
//
/*
*/
//
//
/*
*/
//
//
/*
*/
//
#include "Riostream.h"
#include "TROOT.h"
#include "TGeoManager.h"
#include "TGeoVolume.h"
#include "TGeoPara.h"
ClassImp(TGeoPara)
//_____________________________________________________________________________
TGeoPara::TGeoPara()
{
// Default constructor
SetShapeBit(TGeoShape::kGeoPara);
fX = fY = fZ = 0;
fAlpha = 0;
fTheta = 0;
fPhi = 0;
fTxy = 0;
fTxz = 0;
fTyz = 0;
}
//_____________________________________________________________________________
TGeoPara::TGeoPara(Double_t dx, Double_t dy, Double_t dz, Double_t alpha,
Double_t theta, Double_t phi)
:TGeoBBox(0, 0, 0)
{
// Default constructor specifying minimum and maximum radius
SetShapeBit(TGeoShape::kGeoPara);
fX = dx;
fY = dy;
fZ = dz;
fAlpha = alpha;
fTheta = theta;
fPhi = phi;
fTxy = TMath::Tan(alpha*TMath::DegToRad());
Double_t tth = TMath::Tan(theta*TMath::DegToRad());
Double_t ph = phi*TMath::DegToRad();
fTxz = tth*TMath::Cos(ph);
fTyz = tth*TMath::Sin(ph);
if ((fX<0) || (fY<0) || (fZ<0)) {
// printf("para : %f %f %f\n", fX, fY, fZ);
SetShapeBit(kGeoRunTimeShape);
}
else ComputeBBox();
}
//_____________________________________________________________________________
TGeoPara::TGeoPara(const char *name, Double_t dx, Double_t dy, Double_t dz, Double_t alpha,
Double_t theta, Double_t phi)
:TGeoBBox(name, 0, 0, 0)
{
// Default constructor specifying minimum and maximum radius
SetShapeBit(TGeoShape::kGeoPara);
fX = dx;
fY = dy;
fZ = dz;
fAlpha = alpha;
fTheta = theta;
fPhi = phi;
fTxy = TMath::Tan(alpha*TMath::DegToRad());
Double_t tth = TMath::Tan(theta*TMath::DegToRad());
Double_t ph = phi*TMath::DegToRad();
fTxz = tth*TMath::Cos(ph);
fTyz = tth*TMath::Sin(ph);
if ((fX<0) || (fY<0) || (fZ<0)) {
// printf("para : %f %f %f\n", fX, fY, fZ);
SetShapeBit(kGeoRunTimeShape);
}
else ComputeBBox();
}
//_____________________________________________________________________________
TGeoPara::TGeoPara(Double_t *param)
:TGeoBBox(0, 0, 0)
{
// Default constructor
// param[0] = dx
// param[1] = dy
// param[2] = dz
// param[3] = alpha
// param[4] = theta
// param[5] = phi
SetShapeBit(TGeoShape::kGeoPara);
SetDimensions(param);
if ((fX<0) || (fY<0) || (fZ<0)) SetShapeBit(kGeoRunTimeShape);
else ComputeBBox();
}
//_____________________________________________________________________________
TGeoPara::~TGeoPara()
{
// destructor
}
//_____________________________________________________________________________
void TGeoPara::ComputeBBox()
{
// compute bounding box
Double_t dx = fX+fY*TMath::Abs(fTxy)+fZ*TMath::Abs(fTxz);
Double_t dy = fY+fZ*TMath::Abs(fTyz);
Double_t dz = fZ;
TGeoBBox::SetBoxDimensions(dx, dy, dz);
memset(fOrigin, 0, 3*sizeof(Double_t));
}
//_____________________________________________________________________________
void TGeoPara::ComputeNormal(Double_t *point, Double_t *dir, Double_t *norm)
{
// Compute normal to closest surface from POINT.
Double_t saf[3];
// distance from point to higher Z face
saf[0] = TMath::Abs(fZ-TMath::Abs(point[2])); // Z
Double_t yt = point[1]-fTyz*point[2];
saf[1] = TMath::Abs(fY-TMath::Abs(yt)); // Y
// cos of angle YZ
Double_t cty = 1.0/TMath::Sqrt(1.0+fTyz*fTyz);
Double_t xt = point[0]-fTxz*point[2]-fTxy*yt;
saf[2] = TMath::Abs(fX-TMath::Abs(xt)); // X
// cos of angle XZ
Double_t ctx = 1.0/TMath::Sqrt(1.0+fTxy*fTxy+fTxz*fTxz);
saf[2] *= ctx;
saf[1] *= cty;
Int_t i = TMath::LocMin(3,saf);
switch (i) {
case 0:
norm[0] = norm[1] = 0;
norm[2] = TMath::Sign(1.,dir[2]);
return;
case 1:
norm[0] = 0;
norm[1] = cty;
norm[2] = - fTyz*cty;
break;
case 2:
norm[0] = TMath::Cos(fTheta*TMath::DegToRad())*TMath::Cos(fAlpha*TMath::DegToRad());
norm[1] = - TMath::Cos(fTheta*TMath::DegToRad())*TMath::Sin(fAlpha*TMath::DegToRad());
norm[2] = -TMath::Sin(fTheta*TMath::DegToRad());
}
if (norm[0]*dir[0]+norm[1]*dir[1]+norm[2]*dir[2]<0) {
norm[0] = -norm[0];
norm[1] = -norm[1];
norm[2] = -norm[2];
}
}
//_____________________________________________________________________________
Bool_t TGeoPara::Contains(Double_t *point) const
{
// test if point is inside this sphere
// test Z range
if (TMath::Abs(point[2]) > fZ) return kFALSE;
// check X and Y
Double_t yt=point[1]-fTyz*point[2];
if (TMath::Abs(yt) > fY) return kFALSE;
Double_t xt=point[0]-fTxz*point[2]-fTxy*yt;
if (TMath::Abs(xt) > fX) return kFALSE;
return kTRUE;
}
//_____________________________________________________________________________
Double_t TGeoPara::DistFromInside(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from inside point to surface of the para
// Boundary safe algorithm.
if (iact<3 && safe) {
// compute safety
*safe = Safety(point, kTRUE);
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
Double_t saf[2];
Double_t snxt = TGeoShape::Big();
Double_t s;
saf[0] = fZ+point[2];
saf[1] = fZ-point[2];
if (dir[2]!=0) {
s = (dir[2]>0)?(saf[1]/dir[2]):(-saf[0]/dir[2]);
if (s<0) return 0.0;
if (s<snxt) snxt = s;
}
// distance from point to center axis on Y
Double_t yt = point[1]-fTyz*point[2];
saf[0] = fY+yt;
saf[1] = fY-yt;
Double_t dy = dir[1]-fTyz*dir[2];
if (dy!=0) {
s = (dy>0)?(saf[1]/dy):(-saf[0]/dy);
if (s<0) return 0.0;
if (s<snxt) snxt = s;
}
// distance from point to center axis on X
Double_t xt = point[0]-fTxz*point[2]-fTxy*yt;
saf[0] = fX+xt;
saf[1] = fX-xt;
Double_t dx = dir[0]-fTxz*dir[2]-fTxy*dy;
if (dx!=0) {
s = (dx>0)?(saf[1]/dx):(-saf[0]/dx);
if (s<0) return 0.0;
if (s<snxt) snxt = s;
}
return snxt;
}
//_____________________________________________________________________________
Double_t TGeoPara::DistFromOutside(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from inside point to surface of the para
Double_t snxt=TGeoShape::Big();
if (iact<3 && safe) {
// compute safe distance
*safe = Safety(point, kFALSE);
if (iact==0) return TGeoShape::Big();
if (iact==1 && step<*safe) return TGeoShape::Big();
}
Bool_t in = kTRUE;
Double_t safz;
safz = TMath::Abs(point[2])-fZ;
if (safz>0) {
// outside Z
if (point[2]*dir[2]>=0) return TGeoShape::Big();
in = kFALSE;
}
Double_t yt=point[1]-fTyz*point[2];
Double_t safy = TMath::Abs(yt)-fY;
Double_t dy=dir[1]-fTyz*dir[2];
if (safy>0) {
if (yt*dy>=0) return TGeoShape::Big();
in = kFALSE;
}
Double_t xt=point[0]-fTxy*yt-fTxz*point[2];
Double_t safx = TMath::Abs(xt)-fX;
Double_t dx=dir[0]-fTxy*dy-fTxz*dir[2];
if (safx>0) {
if (xt*dx>=0) return TGeoShape::Big();
in = kFALSE;
}
// protection in case point is actually inside
if (in) {
if (safz>safx && safz>safy) {
if (point[2]*dir[2]>0) return TGeoShape::Big();
return 0.0;
}
if (safx>safy) {
if (xt*dx>0) return TGeoShape::Big();
return 0.0;
}
if (yt*dy>0) return TGeoShape::Big();
return 0.0;
}
Double_t xnew,ynew,znew;
if (safz>0) {
snxt = safz/TMath::Abs(dir[2]);
xnew = point[0]+snxt*dir[0];
ynew = point[1]+snxt*dir[1];
znew = (point[2]>0)?fZ:(-fZ);
Double_t ytn = ynew-fTyz*znew;
if (TMath::Abs(ytn)<=fY) {
Double_t xtn = xnew-fTxy*ytn-fTxz*znew;
if (TMath::Abs(xtn)<=fX) return snxt;
}
}
if (safy>0) {
snxt = safy/TMath::Abs(dy);
znew = point[2]+snxt*dir[2];
if (TMath::Abs(znew)<=fZ) {
Double_t ytn = (yt>0)?fY:(-fY);
xnew = point[0]+snxt*dir[0];
Double_t xtn = xnew-fTxy*ytn-fTxz*znew;
if (TMath::Abs(xtn)<=fX) return snxt;
}
}
if (safx>0) {
snxt = safx/TMath::Abs(dx);
znew = point[2]+snxt*dir[2];
if (TMath::Abs(znew)<=fZ) {
ynew = point[1]+snxt*dir[1];
Double_t ytn = ynew-fTyz*znew;
if (TMath::Abs(ytn)<=fY) return snxt;
}
}
return TGeoShape::Big();
}
//_____________________________________________________________________________
TGeoVolume *TGeoPara::Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv,
Double_t start, Double_t step)
{
//--- Divide this paralelipiped shape belonging to volume "voldiv" into ndiv equal volumes
// called divname, from start position with the given step. Returns pointer
// to created division cell volume. In case a wrong division axis is supplied,
// returns pointer to volume to be divided.
TGeoShape *shape; //--- shape to be created
TGeoVolume *vol; //--- division volume to be created
TGeoVolumeMulti *vmulti; //--- generic divided volume
TGeoPatternFinder *finder; //--- finder to be attached
TString opt = ""; //--- option to be attached
Double_t end=start+ndiv*step;
switch (iaxis) {
case 1: //--- divide on X
shape = new TGeoPara(step/2, fY, fZ,fAlpha,fTheta, fPhi);
finder = new TGeoPatternParaX(voldiv, ndiv, start, end);
opt = "X";
break;
case 2: //--- divide on Y
shape = new TGeoPara(fX, step/2, fZ, fAlpha, fTheta, fPhi);
finder = new TGeoPatternParaY(voldiv, ndiv, start, end);
opt = "Y";
break;
case 3: //--- divide on Z
shape = new TGeoPara(fX, fY, step/2, fAlpha, fTheta, fPhi);
finder = new TGeoPatternParaZ(voldiv, ndiv, start, end);
opt = "Z";
break;
default:
Error("Divide", "Wrong axis type for division");
return 0;
}
vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
vmulti->AddVolume(vol);
voldiv->SetFinder(finder);
finder->SetDivIndex(voldiv->GetNdaughters());
for (Int_t ic=0; ic<ndiv; ic++) {
voldiv->AddNodeOffset(vol, ic, start+step/2.+ic*step, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return vmulti;
}
//_____________________________________________________________________________
Double_t TGeoPara::GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
{
// Get range of shape for a given axis.
xlo = 0;
xhi = 0;
Double_t dx = 0;
switch (iaxis) {
case 1:
xlo = -fX;
xhi = fX;
dx = xhi-xlo;
return dx;
case 2:
xlo = -fY;
xhi = fY;
dx = xhi-xlo;
return dx;
case 3:
xlo = -fZ;
xhi = fZ;
dx = xhi-xlo;
return dx;
}
return dx;
}
//_____________________________________________________________________________
void TGeoPara::GetBoundingCylinder(Double_t *param) const
{
//--- Fill vector param[4] with the bounding cylinder parameters. The order
// is the following : Rmin, Rmax, Phi1, Phi2
TGeoBBox::GetBoundingCylinder(param);
}
//_____________________________________________________________________________
Int_t TGeoPara::GetFittingBox(const TGeoBBox *parambox, TGeoMatrix *mat, Double_t &dx, Double_t &dy, Double_t &dz) const
{
// Fills real parameters of a positioned box inside this. Returns 0 if successfull.
dx=dy=dz=0;
if (mat->IsRotation()) {
Error("GetFittingBox", "cannot handle parametrized rotated volumes");
return 1; // ### rotation not accepted ###
}
//--> translate the origin of the parametrized box to the frame of this box.
Double_t origin[3];
mat->LocalToMaster(parambox->GetOrigin(), origin);
if (!Contains(origin)) {
Error("GetFittingBox", "wrong matrix - parametrized box is outside this");
return 1; // ### wrong matrix ###
}
//--> now we have to get the valid range for all parametrized axis
Double_t dd[3];
dd[0] = parambox->GetDX();
dd[1] = parambox->GetDY();
dd[2] = parambox->GetDZ();
//-> check if Z range is fixed
if (dd[2]<0) {
dd[2] = TMath::Min(origin[2]+fZ, fZ-origin[2]);
if (dd[2]<0) {
Error("GetFittingBox", "wrong matrix");
return 1;
}
}
if (dd[0]>=0 && dd[1]>=0) {
dx = dd[0];
dy = dd[1];
dz = dd[2];
return 0;
}
//-> check now range at Z = origin[2] +/- dd[2]
Double_t upper[8];
Double_t lower[8];
Double_t z=origin[2]-dd[2];
lower[0]=z*fTxz-fTxy*fY-fX;
lower[1]=-fY+z*fTyz;
lower[2]=z*fTxz+fTxy*fY-fX;
lower[3]=fY+z*fTyz;
lower[4]=z*fTxz+fTxy*fY+fX;
lower[5]=fY+z*fTyz;
lower[6]=z*fTxz-fTxy*fY+fX;
lower[7]=-fY+z*fTyz;
z=origin[2]+dd[2];
upper[0]=z*fTxz-fTxy*fY-fX;
upper[1]=-fY+z*fTyz;
upper[2]=z*fTxz+fTxy*fY-fX;
upper[3]=fY+z*fTyz;
upper[4]=z*fTxz+fTxy*fY+fX;
upper[5]=fY+z*fTyz;
upper[6]=z*fTxz-fTxy*fY+fX;
upper[7]=-fY+z*fTyz;
Double_t ddmin=TGeoShape::Big();
for (Int_t iaxis=0; iaxis<2; iaxis++) {
if (dd[iaxis]>=0) continue;
ddmin=TGeoShape::Big();
for (Int_t ivert=0; ivert<4; ivert++) {
ddmin = TMath::Min(ddmin, TMath::Abs(origin[iaxis]-lower[2*ivert+iaxis]));
ddmin = TMath::Min(ddmin, TMath::Abs(origin[iaxis]-upper[2*ivert+iaxis]));
}
dd[iaxis] = ddmin;
}
dx = dd[0];
dy = dd[1];
dz = dd[2];
return 0;
}
//_____________________________________________________________________________
TGeoShape *TGeoPara::GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix * /*mat*/) const
{
// in case shape has some negative parameters, these has to be computed
// in order to fit the mother
if (!TestShapeBit(kGeoRunTimeShape)) return 0;
if (!mother->TestShapeBit(kGeoPara)) {
Error("GetMakeRuntimeShape", "invalid mother");
return 0;
}
Double_t dx, dy, dz;
if (fX<0) dx=((TGeoPara*)mother)->GetX();
else dx=fX;
if (fY<0) dy=((TGeoPara*)mother)->GetY();
else dy=fY;
if (fZ<0) dz=((TGeoPara*)mother)->GetZ();
else dz=fZ;
return (new TGeoPara(dx, dy, dz, fAlpha, fTheta, fPhi));
}
//_____________________________________________________________________________
void TGeoPara::InspectShape() const
{
// print shape parameters
printf("*** Shape %s: TGeoPara ***\n", GetName());
printf(" dX = %11.5f\n", fX);
printf(" dY = %11.5f\n", fY);
printf(" dZ = %11.5f\n", fZ);
printf(" alpha = %11.5f\n", fAlpha);
printf(" theta = %11.5f\n", fTheta);
printf(" phi = %11.5f\n", fPhi);
printf(" Bounding box:\n");
TGeoBBox::InspectShape();
}
//_____________________________________________________________________________
Double_t TGeoPara::Safety(Double_t *point, Bool_t in) const
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
Double_t saf[3];
// distance from point to higher Z face
saf[0] = fZ-TMath::Abs(point[2]); // Z
Double_t yt = point[1]-fTyz*point[2];
saf[1] = fY-TMath::Abs(yt); // Y
// cos of angle YZ
Double_t cty = 1.0/TMath::Sqrt(1.0+fTyz*fTyz);
Double_t xt = point[0]-fTxz*point[2]-fTxy*yt;
saf[2] = fX-TMath::Abs(xt); // X
// cos of angle XZ
Double_t ctx = 1.0/TMath::Sqrt(1.0+fTxy*fTxy+fTxz*fTxz);
saf[2] *= ctx;
saf[1] *= cty;
if (in) return saf[TMath::LocMin(3,saf)];
for (Int_t i=0; i<3; i++) saf[i]=-saf[i];
return saf[TMath::LocMax(3,saf)];
}
//_____________________________________________________________________________
void TGeoPara::SavePrimitive(ofstream &out, Option_t * /*option*/)
{
// Save a primitive as a C++ statement(s) on output stream "out".
if (TObject::TestBit(kGeoSavePrimitive)) return;
out << " // Shape: " << GetName() << " type: " << ClassName() << endl;
out << " dx = " << fX << ";" << endl;
out << " dy = " << fY << ";" << endl;
out << " dz = " << fZ << ";" << endl;
out << " alpha = " << fAlpha<< ";" << endl;
out << " theta = " << fTheta << ";" << endl;
out << " phi = " << fPhi << ";" << endl;
out << " pShape = new TGeoPara(\"" << GetName() << "\",dx,dy,dz,alpha,theta,phi);" << endl;
TObject::SetBit(TGeoShape::kGeoSavePrimitive);
}
//_____________________________________________________________________________
void TGeoPara::SetDimensions(Double_t *param)
{
fX = param[0];
fY = param[1];
fZ = param[2];
fAlpha = param[3];
fTheta = param[4];
fPhi = param[5];
fTxy = TMath::Tan(param[3]*TMath::DegToRad());
Double_t tth = TMath::Tan(param[4]*TMath::DegToRad());
Double_t ph = param[5]*TMath::DegToRad();
fTxz = tth*TMath::Cos(ph);
fTyz = tth*TMath::Sin(ph);
}
//_____________________________________________________________________________
void TGeoPara::SetPoints(Double_t *points) const
{
// create sphere mesh points
if (!points) return;
Double_t TXY = fTxy;
Double_t TXZ = fTxz;
Double_t TYZ = fTyz;
*points++ = -fZ*TXZ-TXY*fY-fX; *points++ = -fY-fZ*TYZ; *points++ = -fZ;
*points++ = -fZ*TXZ+TXY*fY-fX; *points++ = +fY-fZ*TYZ; *points++ = -fZ;
*points++ = -fZ*TXZ+TXY*fY+fX; *points++ = +fY-fZ*TYZ; *points++ = -fZ;
*points++ = -fZ*TXZ-TXY*fY+fX; *points++ = -fY-fZ*TYZ; *points++ = -fZ;
*points++ = +fZ*TXZ-TXY*fY-fX; *points++ = -fY+fZ*TYZ; *points++ = +fZ;
*points++ = +fZ*TXZ+TXY*fY-fX; *points++ = +fY+fZ*TYZ; *points++ = +fZ;
*points++ = +fZ*TXZ+TXY*fY+fX; *points++ = +fY+fZ*TYZ; *points++ = +fZ;
*points++ = +fZ*TXZ-TXY*fY+fX; *points++ = -fY+fZ*TYZ; *points++ = +fZ;
}
//_____________________________________________________________________________
void TGeoPara::SetPoints(Float_t *points) const
{
// create sphere mesh points
if (!points) return;
Double_t TXY = fTxy;
Double_t TXZ = fTxz;
Double_t TYZ = fTyz;
*points++ = -fZ*TXZ-TXY*fY-fX; *points++ = -fY-fZ*TYZ; *points++ = -fZ;
*points++ = -fZ*TXZ+TXY*fY-fX; *points++ = +fY-fZ*TYZ; *points++ = -fZ;
*points++ = -fZ*TXZ+TXY*fY+fX; *points++ = +fY-fZ*TYZ; *points++ = -fZ;
*points++ = -fZ*TXZ-TXY*fY+fX; *points++ = -fY-fZ*TYZ; *points++ = -fZ;
*points++ = +fZ*TXZ-TXY*fY-fX; *points++ = -fY+fZ*TYZ; *points++ = +fZ;
*points++ = +fZ*TXZ+TXY*fY-fX; *points++ = +fY+fZ*TYZ; *points++ = +fZ;
*points++ = +fZ*TXZ+TXY*fY+fX; *points++ = +fY+fZ*TYZ; *points++ = +fZ;
*points++ = +fZ*TXZ-TXY*fY+fX; *points++ = -fY+fZ*TYZ; *points++ = +fZ;
}
//_____________________________________________________________________________
void TGeoPara::Sizeof3D() const
{
// fill size of this 3-D object
TGeoBBox::Sizeof3D();
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.