#include "TH1D.h" #include "TVirtualFFT.h" #include "TF1.h" #include "TCanvas.h" #include "TMath.h" void FFT1() { //This tutorial illustrates the Fast Fourier Transforms interface in ROOT. //FFT transform types provided in ROOT: // - "C2CFORWARD" - a complex input/output discrete Fourier transform (DFT) // in one or more dimensions, -1 in the exponent // - "C2CBACKWARD"- a complex input/output discrete Fourier transform (DFT) // in one or more dimensions, +1 in the exponent // - "R2C" - a real-input/complex-output discrete Fourier transform (DFT) // in one or more dimensions, // - "C2R" - inverse transforms to "R2C", taking complex input // (storing the non-redundant half of a logically Hermitian array) // to real output // - "R2HC" - a real-input DFT with output in ¡Èhalfcomplex¡É format, // i.e. real and imaginary parts for a transform of size n stored as // r0, r1, r2, ..., rn/2, i(n+1)/2-1, ..., i2, i1 // - "HC2R" - computes the reverse of FFTW_R2HC, above // - "DHT" - computes a discrete Hartley transform // Sine/cosine transforms: // DCT-I (REDFT00 in FFTW3 notation) // DCT-II (REDFT10 in FFTW3 notation) // DCT-III(REDFT01 in FFTW3 notation) // DCT-IV (REDFT11 in FFTW3 notation) // DST-I (RODFT00 in FFTW3 notation) // DST-II (RODFT10 in FFTW3 notation) // DST-III(RODFT01 in FFTW3 notation) // DST-IV (RODFT11 in FFTW3 notation) //First part of the tutorial shows how to transform the histograms //Second part shows how to transform the data arrays directly //Authors: Anna Kreshuk and Jens Hoffmann //********* Histograms ********// //prepare the canvas for drawing TCanvas *c1 = new TCanvas("c1", "Fast Fourier Transform", 800, 600); c1->SetFillColor(18); c1->Divide(2, 3); // TPad *c1_1 = new TPad("c1_1", "c1_1",0.01,0.67,0.49,0.99); // TPad *c1_2 = new TPad("c1_2", "c1_2",0.51,0.67,0.99,0.99); // TPad *c1_3 = new TPad("c1_3", "c1_3",0.01,0.34,0.49,0.65); // TPad *c1_4 = new TPad("c1_4", "c1_4",0.51,0.34,0.99,0.65); // TPad *c1_5 = new TPad("c1_5", "c1_5",0.01,0.01,0.49,0.32); // TPad *c1_6 = new TPad("c1_6", "c1_6",0.51,0.01,0.99,0.32); // c1_1->Draw(); // c1_2->Draw(); // c1_3->Draw(); // c1_4->Draw(); // c1_5->Draw(); // c1_6->Draw(); c1_1->SetFillColor(16); c1_1->SetFrameFillColor(42); c1_2->SetFillColor(16); c1_2->SetFrameFillColor(42); c1_3->SetFillColor(16); c1_3->SetFrameFillColor(42); c1_4->SetFillColor(16); c1_4->SetFrameFillColor(42); c1_5->SetFillColor(16); c1_5->SetFrameFillColor(42); c1_6->SetFillColor(16); c1_6->SetFrameFillColor(42); c1_1->cd(); TH1::AddDirectory(kFALSE); Double_t fr = 1.e4; Double_t dk = 1.e-2; Int_t n=1024; Double_t upX = 10./dk*1./fr*TMath::Pi(); //upX= 40*TMath::Pi(); //A function to sample TF1 *fsin = new TF1("fsin", "sin(x)+sin(2*x)+sin(0.5*x)+1", 0, upX); //fsin->Draw(); TH1D *hsin = new TH1D("hsin", "hsin", n+1, 0, upX); Double_t x; Double_t f[10]; Double_t r[10]; Double_t k[10]; Double_t dr = 1.; for (int i=0; i<10; i++) { r[i] = (i+1)*dr; } f[0] = r[0]*r[0]; for (int i=0; i<9; i++) { f[i+1] = r[i+1]*r[i+1] - r[i]*r[i]; f[i+1] = 1; printf("f[%d]=%f\n", i+1, f[i+1]); } for (int i=0; i<10; i++) { k[i] = (i+1)*dk; // k[i] = 0; } //k[0]=100; k[1]=1; Double_t a; //Fill the histogram with function values for (Int_t j=0; j<=n; j++){ x = (Double_t(j)/n)*(upX); a = 0; for (int i=0; i<10; i++) { a += f[i]*TMath::Cos(2*TMath::Pi()*fr*(k[i] + 1)*x); //a = f[0]*TMath::Cos(2*TMath::Pi()*1*(k[0] + 0)*x); } //printf("qqq %f\n", a); hsin->SetBinContent(j+1, a); } hsin->Draw(); fsin->GetXaxis()->SetLabelSize(0.05); fsin->GetYaxis()->SetLabelSize(0.05); c1->Modified(); c1->Update(); //return; c1_2->cd(); //Compute the transform and look at the magnitude of the output TH1 *hm =0; TVirtualFFT::SetTransform(0); hm = hsin->FFT(hm, "MAG"); hm->SetTitle("Magnitude of the 1st transform"); hm->SetStats(kFALSE); //hm->Scale(1./TMath::Sqrt(n)); hm->Draw(); hm->GetXaxis()->SetLabelSize(0.05); hm->GetYaxis()->SetLabelSize(0.05); printf("qqq %d %f\n", hm->GetXaxis()->GetLast(), hm->GetXaxis()->GetXmax()); //hm->GetXaxis()->SetLimits(0, n/upX ); //hm->GetXaxis()->SetRange(0, n/2); //NOTE: for "real" frequencies you have to divide the x-axes range with the range of your function //(in this case 4*Pi); y-axes has to be rescaled by a factor of 1/SQRT(n) to be right: this is not done automatically! c1_3->cd(); //Look at the phase of the output TH1 *hp = 0; hp = hsin->FFT(hp, "PH"); hp->SetTitle("Phase of the 1st transform"); hp->Draw(); hp->SetStats(kFALSE); hp->GetXaxis()->SetLabelSize(0.05); hp->GetYaxis()->SetLabelSize(0.05); //Look at the DC component and the Nyquist harmonic: Double_t re, im; //That's the way to get the current transform object: TVirtualFFT *fft = TVirtualFFT::GetCurrentTransform(); c1_4->cd(); //Use the following method to get just one point of the output fft->GetPointComplex(0, re, im); printf("1st transform: DC component: %f\n", re); fft->GetPointComplex(n/2+1, re, im); printf("1st transform: Nyquist harmonic: %f\n", re); //Use the following method to get the full output: Double_t *re_full = new Double_t[n]; Double_t *im_full = new Double_t[n]; fft->GetPointsComplex(re_full,im_full); //Now let's make a backward transform: TVirtualFFT *fft_back = TVirtualFFT::FFT(1, &n, "C2R M K"); fft_back->SetPointsComplex(re_full,im_full); fft_back->Transform(); TH1 *hb = 0; //Let's look at the output hb = TH1::TransformHisto(fft_back,hb,"Re"); hb->SetTitle("The backward transform result"); hb->Draw(); //NOTE: here you get at the x-axes number of bins and not real values //(in this case 25 bins has to be rescaled to a range between 0 and 4*Pi; //also here the y-axes has to be rescaled (factor 1/bins) hb->SetStats(kFALSE); hb->GetXaxis()->SetLabelSize(0.05); hb->GetYaxis()->SetLabelSize(0.05); delete fft_back; fft_back=0; //********* Data array - same transform ********// //Allocate an array big enough to hold the transform output //Transform output in 1d contains, for a transform of size N, //N/2+1 complex numbers, i.e. 2*(N/2+1) real numbers //our transform is of size n+1, because the histogram has n+1 bins Double_t *in = new Double_t[2*((n+1)/2+1)]; Double_t re_2,im_2; for (Int_t i=0; i<=n; i++){ x = (Double_t(i)/n)*(upX); in[i] = fsin->Eval(x); } //Make our own TVirtualFFT object (using option "K") //Third parameter (option) consists of 3 parts: //-transform type: // real input/complex output in our case //-transform flag: // the amount of time spent in planning // the transform (see TVirtualFFT class description) //-to create a new TVirtualFFT object (option "K") or use the global (default) Int_t n_size = n+1; TVirtualFFT *fft_own = TVirtualFFT::FFT(1, &n_size, "R2C ES K"); if (!fft_own) return; fft_own->SetPoints(in); fft_own->Transform(); //Copy all the output points: fft_own->GetPoints(in); //Draw the real part of the output c1_5->cd(); TH1 *hr = 0; hr = TH1::TransformHisto(fft_own, hr, "RE"); hr->SetTitle("Real part of the 3rd (array) tranfsorm"); hr->Draw(); hr->SetStats(kFALSE); hr->GetXaxis()->SetLabelSize(0.05); hr->GetYaxis()->SetLabelSize(0.05); c1_6->cd(); TH1 *him = 0; him = TH1::TransformHisto(fft_own, him, "IM"); him->SetTitle("Im. part of the 3rd (array) transform"); him->Draw(); him->SetStats(kFALSE); him->GetXaxis()->SetLabelSize(0.05); him->GetYaxis()->SetLabelSize(0.05); c1->cd(); //Now let's make another transform of the same size //The same transform object can be used, as the size and the type of the transform //haven't changed TF1 *fcos = new TF1("fcos", "cos(x)+cos(0.5*x)+cos(2*x)+1", 0, upX); for (Int_t i=0; i<=n; i++){ x = (Double_t(i)/n)*(upX); in[i] = fcos->Eval(x); } fft_own->SetPoints(in); fft_own->Transform(); fft_own->GetPointComplex(0, re_2, im_2); printf("2nd transform: DC component: %f\n", re_2); fft_own->GetPointComplex(n/2+1, re_2, im_2); printf("2nd transform: Nyquist harmonic: %f\n", re_2); delete fft_own; delete [] in; delete [] re_full; delete [] im_full; }