{ gSystem->Load("libMLP"); TFile input("exampleTree.root"); TTree *inTree = input.Get("smallTree"); TMultiLayerPerceptron *mlp = new TMultiLayerPerceptron("@trkPHperPlane, @eventPlanes, @shwPHperStrip:5:type!", "1+(type==0)", inTree, "Entry$%5","!(Entry$%5)"); // mlp->SetLearningMethod(TMultiLayerPerceptron::kStochastic); mlp->Train(200,"text,graph,update=10"); mlp->DrawResult(0,"test"); cout << "Test set distribution. Mean : " << MLP_test0.GetMean() << " RMS " << MLP_test0.GetRMS() << endl; }