|
template<class T > |
const T | ROOT::Math::Square (const T &x) |
| square Template function to compute \(x\cdot x \), for any type T returning a type T More...
|
|
template<class T > |
const T | ROOT::Math::Maximum (const T &lhs, const T &rhs) |
| maximum. More...
|
|
template<class T > |
const T | ROOT::Math::Minimum (const T &lhs, const T &rhs) |
| minimum. More...
|
|
template<class T > |
int | ROOT::Math::Round (const T &x) |
| round. More...
|
|
template<class T > |
int | ROOT::Math::Sign (const T &x) |
| sign. More...
|
|
template<class T , unsigned int D> |
T | ROOT::Math::Dot (const SVector< T, D > &lhs, const SVector< T, D > &rhs) |
| Vector dot product. More...
|
|
template<class A , class T , unsigned int D> |
T | ROOT::Math::Dot (const SVector< T, D > &lhs, const VecExpr< A, T, D > &rhs) |
|
template<class A , class T , unsigned int D> |
T | ROOT::Math::Dot (const VecExpr< A, T, D > &lhs, const SVector< T, D > &rhs) |
|
template<class A , class B , class T , unsigned int D> |
T | ROOT::Math::Dot (const VecExpr< A, T, D > &lhs, const VecExpr< B, T, D > &rhs) |
|
template<class T , unsigned int D> |
T | ROOT::Math::Mag2 (const SVector< T, D > &rhs) |
| Vector magnitude square Template to compute \(|\vec{v}|^2 = \sum_iv_i^2 \). More...
|
|
template<class A , class T , unsigned int D> |
T | ROOT::Math::Mag2 (const VecExpr< A, T, D > &rhs) |
|
template<class T , unsigned int D> |
T | ROOT::Math::Mag (const SVector< T, D > &rhs) |
| Vector magnitude (Euclidian norm) Compute : \( |\vec{v}| = \sqrt{\sum_iv_i^2} \). More...
|
|
template<class A , class T , unsigned int D> |
T | ROOT::Math::Mag (const VecExpr< A, T, D > &rhs) |
|
template<class T > |
T | ROOT::Math::Lmag2 (const SVector< T, 4 > &rhs) |
| Lmag2: Square of Minkowski Lorentz-Vector norm (only for 4D Vectors) Template to compute \( |\vec{v}|^2 = v_0^2 - v_1^2 - v_2^2 -v_3^2 \). More...
|
|
template<class A , class T > |
T | ROOT::Math::Lmag2 (const VecExpr< A, T, 4 > &rhs) |
|
template<class T > |
T | ROOT::Math::Lmag (const SVector< T, 4 > &rhs) |
| Lmag: Minkowski Lorentz-Vector norm (only for 4-dim vectors) Length of a vector Lorentz-Vector: \( |\vec{v}| = \sqrt{v_0^2 - v_1^2 - v_2^2 -v_3^2} \). More...
|
|
template<class A , class T > |
T | ROOT::Math::Lmag (const VecExpr< A, T, 4 > &rhs) |
|
template<class T > |
SVector< T, 3 > | ROOT::Math::Cross (const SVector< T, 3 > &lhs, const SVector< T, 3 > &rhs) |
| Vector Cross Product (only for 3-dim vectors) \( \vec{c} = \vec{a}\times\vec{b} \). More...
|
|
template<class A , class T > |
SVector< T, 3 > | ROOT::Math::Cross (const VecExpr< A, T, 3 > &lhs, const SVector< T, 3 > &rhs) |
|
template<class T , class A > |
SVector< T, 3 > | ROOT::Math::Cross (const SVector< T, 3 > &lhs, const VecExpr< A, T, 3 > &rhs) |
|
template<class A , class B , class T > |
SVector< T, 3 > | ROOT::Math::Cross (const VecExpr< A, T, 3 > &lhs, const VecExpr< B, T, 3 > &rhs) |
|
template<class T , unsigned int D> |
SVector< T, D > | ROOT::Math::Unit (const SVector< T, D > &rhs) |
| Unit. More...
|
|
template<class A , class T , unsigned int D> |
SVector< T, D > | ROOT::Math::Unit (const VecExpr< A, T, D > &rhs) |
|