// @(#)root/hist:$Id$ // Author: Rene Brun 29/09/95 /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ #include "TProfile.h" #include "TMath.h" #include "TF1.h" #include "THLimitsFinder.h" #include "Riostream.h" #include "TVirtualPad.h" #include "TError.h" #include "TClass.h" #include "TProfileHelper.h" Bool_t TProfile::fgApproximate = kFALSE; ClassImp(TProfile) //______________________________________________________________________________ // // Profile histograms are used to display the mean // value of Y and its error for each bin in X. The displayed error is by default the // standard error on the mean (i.e. the standard deviation divided by the sqrt(n) ) // Profile histograms are in many cases an // elegant replacement of two-dimensional histograms : the inter-relation of two // measured quantities X and Y can always be visualized by a two-dimensional // histogram or scatter-plot; its representation on the line-printer is not particularly // satisfactory, except for sparse data. If Y is an unknown (but single-valued) // approximate function of X, this function is displayed by a profile histogram with // much better precision than by a scatter-plot. // // The following formulae show the cumulated contents (capital letters) and the values // displayed by the printing or plotting routines (small letters) of the elements for bin J. // // 2 // H(J) = sum Y E(J) = sum Y // l(J) = sum l L(J) = sum l // h(J) = H(J)/L(J) mean of Y, // s(J) = sqrt(E(J)/L(J)- h(J)**2) standard deviation of Y (e.g. RMS) // e(J) = s(J)/sqrt(L(J)) standard error on the mean // // The displayed bin content for bin J of a TProfile is always h(J). The corresponding bin error is by default // e(J). In case the option "s" is used (in the constructor or by calling TProfile::BuildOptions) // the displayed error is s(J) // // In the special case where s(J) is zero (eg, case of 1 entry only in one bin) // the bin error e(J) is computed from the average of the s(J) for all bins if // the static function TProfile::Approximate has been called. // This simple/crude approximation was suggested in order to keep the bin // during a fit operation. But note that this approximation is not the default behaviour. // See also TProfile::BuildOptions for other error options and more detailed explanations // // Example of a profile histogram with its graphics output //{ // TCanvas *c1 = new TCanvas("c1","Profile histogram example",200,10,700,500); // hprof = new TProfile("hprof","Profile of pz versus px",100,-4,4,0,20); // Float_t px, py, pz; // for ( Int_t i=0; i<25000; i++) { // gRandom->Rannor(px,py); // pz = px*px + py*py; // hprof->Fill(px,pz,1); // } // hprof->Draw(); //} //Begin_Html /* <img src="gif/profile.gif"> */ //End_Html // //______________________________________________________________________________ TProfile::TProfile() : TH1D() { //*-*-*-*-*-*Default constructor for Profile histograms*-*-*-*-*-*-*-*-* //*-* ========================================== BuildOptions(0,0,""); } //______________________________________________________________________________ TProfile::~TProfile() { //*-*-*-*-*-*Default destructor for Profile histograms*-*-*-*-*-*-*-*-* //*-* ========================================= } //______________________________________________________________________________ TProfile::TProfile(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup,Option_t *option) : TH1D(name,title,nbins,xlow,xup) { //*-*-*-*-*-*Normal Constructor for Profile histograms*-*-*-*-*-*-*-*-*-* //*-* ========================================== // // The first five parameters are similar to TH1D::TH1D. // All values of y are accepted at filling time. // To fill a profile histogram, one must use TProfile::Fill function. // // Note that when filling the profile histogram the function Fill // checks if the variable y is betyween fYmin and fYmax. // If a minimum or maximum value is set for the Y scale before filling, // then all values below ymin or above ymax will be discarded. // Setting the minimum or maximum value for the Y scale before filling // has the same effect as calling the special TProfile constructor below // where ymin and ymax are specified. // // H(J) is printed as the channel contents. The errors displayed are s(J) if CHOPT='S' // (spread option), or e(J) if CHOPT=' ' (error on mean). // // See TProfile::BuildOptions for explanation of parameters // // see also comments in the TH1 base class constructors BuildOptions(0,0,option); } //______________________________________________________________________________ TProfile::TProfile(const char *name,const char *title,Int_t nbins,const Float_t *xbins,Option_t *option) : TH1D(name,title,nbins,xbins) { //*-*-*-*-*-*Constructor for Profile histograms with variable bin size*-*-*-*-* //*-* ========================================================= // // See TProfile::BuildOptions for more explanations on errors // // see also comments in the TH1 base class constructors BuildOptions(0,0,option); } //______________________________________________________________________________ TProfile::TProfile(const char *name,const char *title,Int_t nbins,const Double_t *xbins,Option_t *option) : TH1D(name,title,nbins,xbins) { //*-*-*-*-*-*Constructor for Profile histograms with variable bin size*-*-*-*-* //*-* ========================================================= // // See TProfile::BuildOptions for more explanations on errors // // see also comments in the TH1 base class constructors BuildOptions(0,0,option); } //______________________________________________________________________________ TProfile::TProfile(const char *name,const char *title,Int_t nbins,const Double_t *xbins,Double_t ylow,Double_t yup,Option_t *option) : TH1D(name,title,nbins,xbins) { //*-*-*-*-*-*Constructor for Profile histograms with variable bin size*-*-*-*-* //*-* ========================================================= // // See TProfile::BuildOptions for more explanations on errors // // see also comments in the TH1 base class constructors BuildOptions(ylow,yup,option); } //______________________________________________________________________________ TProfile::TProfile(const char *name,const char *title,Int_t nbins,Double_t xlow,Double_t xup,Double_t ylow,Double_t yup,Option_t *option) : TH1D(name,title,nbins,xlow,xup) { //*-*-*-*-*-*Constructor for Profile histograms with range in y*-*-*-*-*-* //*-* ================================================== // The first five parameters are similar to TH1D::TH1D. // Only the values of Y between ylow and yup will be considered at filling time. // ylow and yup will also be the maximum and minimum values // on the y scale when drawing the profile. // // See TProfile::BuildOptions for more explanations on errors // // see also comments in the TH1 base class constructors BuildOptions(ylow,yup,option); } //______________________________________________________________________________ void TProfile::BuildOptions(Double_t ymin, Double_t ymax, Option_t *option) { //*-*-*-*-*-*-*Set Profile histogram structure and options*-*-*-*-*-*-*-*-* //*-* =========================================== // ymin: minimum value allowed for y // ymax: maximum value allowed for y // if (ymin = ymax = 0) there are no limits on the allowed y values (ymin = -inf, ymax = +inf) // // option: this is the option for the computation of the y error of the profile ( TProfile::GetBinError ) // possible values for the options are: // // // ' ' (Default) the bin errors are the standard error on the mean of Y = S(Y)/SQRT(N) // where S(Y) is the standard deviation (RMS) of the Y data in the bin // and N is the number of bin entries (from TProfile::GetBinEntries(ibin) ) // (i.e the errors are the standard error on the bin content of the profile) // // 's' Errors are the standard deviation of Y, S(Y) // // 'i' Errors are S(Y)/SQRT(N) (standard error on the mean as in the default) // The only difference is only when the standard deviation in Y is zero. // In this case the error a standard deviation = 1/SQRT(12) is assumed and the error is // 1./SQRT(12*N). // This approximation assumes that the Y values are integer (e.g. ADC counts) // and have an implicit uncertainty of y +/- 0.5. With the assumption that the probability that y // takes any value between y-0.5 and y+0.5 is uniform, its standard error is 1/SQRT(12) // // 'g' Errors are 1./SQRT(W) where W is the sum of the weights for the bin J // W is obtained as from TProfile::GetBinEntries(ibin) // This errors corresponds to the standard deviation of weighted mean where each // measurement Y is uncorrelated and has an error sigma, which is expressed in the // weight used to fill the Profile: w = 1/sigma^2 // The resulting error in TProfile is then 1./SQRT( Sum(1./sigma^2) ) // // In the case of Profile filled weights and with TProfile::Sumw2() called, // STD(Y) is the standard deviation of the weighted sample Y and N is in this case the // number of effective entries (TProfile::GetBinEffectiveEntries(ibin) ) // // If a bin has N data points all with the same value Y (especially // possible when dealing with integers), the spread in Y for that bin // is zero, and the uncertainty assigned is also zero, and the bin is // ignored in making subsequent fits. // To avoid this problem one can use an approximation for the standard deviation S(Y), // by using the average of all the S(Y) of the other Profile bins. To use this approximation // one must call before TProfile::Approximate // This approximayion applies only for the default and the 's' options // SetErrorOption(option); // create extra profile data structire (bin entries/ y^2 and sum of weight square) TProfileHelper::BuildArray(this); fYmin = ymin; fYmax = ymax; fScaling = kFALSE; fTsumwy = fTsumwy2 = 0; } //______________________________________________________________________________ TProfile::TProfile(const TProfile &profile) : TH1D() { // Copy constructor. ((TProfile&)profile).Copy(*this); } //______________________________________________________________________________ Bool_t TProfile::Add(TF1 *, Double_t, Option_t * ) { // Performs the operation: this = this + c1*f1 Error("Add","Function not implemented for TProfile"); return kFALSE; } //______________________________________________________________________________ Bool_t TProfile::Add(const TH1 *h1, Double_t c1) { // Performs the operation: this = this + c1*h1 if (!h1) { Error("Add","Attempt to add a non-existing profile"); return kFALSE; } if (!h1->InheritsFrom(TProfile::Class())) { Error("Add","Attempt to add a non-profile object"); return kFALSE; } return TProfileHelper::Add(this, this, h1, 1, c1); } //______________________________________________________________________________ Bool_t TProfile::Add(const TH1 *h1, const TH1 *h2, Double_t c1, Double_t c2) { //*-*-*-*-*Replace contents of this profile by the addition of h1 and h2*-*-* //*-* ============================================================= // // this = c1*h1 + c2*h2 // // c1 and c2 are considered as weights applied to the two summed profiles. // The operation acts therefore like merging the two profiles with a weight c1 and c2 // if (!h1 || !h2) { Error("Add","Attempt to add a non-existing profile"); return kFALSE; } if (!h1->InheritsFrom(TProfile::Class())) { Error("Add","Attempt to add a non-profile object"); return kFALSE; } if (!h2->InheritsFrom(TProfile::Class())) { Error("Add","Attempt to add a non-profile object"); return kFALSE; } return TProfileHelper::Add(this, h1, h2, c1, c2); } //______________________________________________________________________________ void TProfile::Approximate(Bool_t approx) { // static function // set the fgApproximate flag. When the flag is true, the function GetBinError // will approximate the bin error with the average profile error on all bins // in the following situation only // - the number of bins in the profile is less than 1002 // - the bin number of entries is small ( <5) // - the estimated bin error is extremely small compared to the bin content // (see TProfile::GetBinError) fgApproximate = approx; } //______________________________________________________________________________ Int_t TProfile::BufferEmpty(Int_t action) { // Fill histogram with all entries in the buffer. // action = -1 histogram is reset and refilled from the buffer (called by THistPainter::Paint) // action = 0 histogram is filled from the buffer // action = 1 histogram is filled and buffer is deleted // The buffer is automatically deleted when the number of entries // in the buffer is greater than the number of entries in the histogram // do we need to compute the bin size? if (!fBuffer) return 0; Int_t nbentries = (Int_t)fBuffer[0]; if (!nbentries) return 0; Double_t *buffer = fBuffer; if (nbentries < 0) { if (action == 0) return 0; nbentries = -nbentries; fBuffer=0; Reset("ICES"); // reset without deleting the functions fBuffer = buffer; } if (CanExtendAllAxes() || fXaxis.GetXmax() <= fXaxis.GetXmin()) { //find min, max of entries in buffer Double_t xmin = fBuffer[2]; Double_t xmax = xmin; for (Int_t i=1;i<nbentries;i++) { Double_t x = fBuffer[3*i+2]; if (x < xmin) xmin = x; if (x > xmax) xmax = x; } if (fXaxis.GetXmax() <= fXaxis.GetXmin()) { THLimitsFinder::GetLimitsFinder()->FindGoodLimits(this,xmin,xmax); } else { fBuffer = 0; Int_t keep = fBufferSize; fBufferSize = 0; if (xmin < fXaxis.GetXmin()) ExtendAxis(xmin,&fXaxis); if (xmax >= fXaxis.GetXmax()) ExtendAxis(xmax,&fXaxis); fBuffer = buffer; fBufferSize = keep; } } fBuffer = 0; for (Int_t i=0;i<nbentries;i++) { Fill(buffer[3*i+2],buffer[3*i+3],buffer[3*i+1]); } fBuffer = buffer; if (action > 0) { delete [] fBuffer; fBuffer = 0; fBufferSize = 0;} else { if (nbentries == (Int_t)fEntries) fBuffer[0] = -nbentries; else fBuffer[0] = 0; } return nbentries; } //______________________________________________________________________________ Int_t TProfile::BufferFill(Double_t x, Double_t y, Double_t w) { // accumulate arguments in buffer. When buffer is full, empty the buffer // fBuffer[0] = number of entries in buffer // fBuffer[1] = w of first entry // fBuffer[2] = x of first entry // fBuffer[3] = y of first entry if (!fBuffer) return -2; Int_t nbentries = (Int_t)fBuffer[0]; if (nbentries < 0) { nbentries = -nbentries; fBuffer[0] = nbentries; if (fEntries > 0) { Double_t *buffer = fBuffer; fBuffer=0; Reset("ICES"); // reset without deleting the functions fBuffer = buffer; } } if (3*nbentries+3 >= fBufferSize) { BufferEmpty(1); return Fill(x,y,w); } fBuffer[3*nbentries+1] = w; fBuffer[3*nbentries+2] = x; fBuffer[3*nbentries+3] = y; fBuffer[0] += 1; return -2; } //______________________________________________________________________________ void TProfile::Copy(TObject &obj) const { //*-*-*-*-*-*-*-*Copy a Profile histogram to a new profile histogram*-*-*-*-* //*-* =================================================== try { TProfile & pobj = dynamic_cast<TProfile&>(obj); TH1D::Copy(pobj); fBinEntries.Copy(pobj.fBinEntries); fBinSumw2.Copy(pobj.fBinSumw2); for (int bin=0;bin<fNcells;bin++) { pobj.fArray[bin] = fArray[bin]; pobj.fSumw2.fArray[bin] = fSumw2.fArray[bin]; } pobj.fYmin = fYmin; pobj.fYmax = fYmax; pobj.fScaling = fScaling; pobj.fErrorMode = fErrorMode; pobj.fTsumwy = fTsumwy; pobj.fTsumwy2 = fTsumwy2; } catch(...) { Fatal("Copy","Cannot copy a TProfile in a %s",obj.IsA()->GetName()); } } //______________________________________________________________________________ Bool_t TProfile::Divide(TF1 *, Double_t ) { // Performs the operation: this = this/(c1*f1) // This function is not implemented for the TProfile Error("Divide","Function not implemented for TProfile"); return kFALSE; } //______________________________________________________________________________ Bool_t TProfile::Divide(const TH1 *h1) { //*-*-*-*-*-*-*-*-*-*-*Divide this profile by h1*-*-*-*-*-*-*-*-*-*-*-*-* //*-* ========================= // // this = this/h1 // This function accepts to divide a TProfile by a histogram // // The function return kFALSE if the divide operation failed if (!h1) { Error("Divide","Attempt to divide a non-existing profile"); return kFALSE; } if (!h1->InheritsFrom(TH1::Class())) { Error("Divide","Attempt to divide by a non-profile or non-histogram object"); return kFALSE; } TProfile *p1 = (TProfile*)h1; // delete buffer if it is there since it will become invalid if (fBuffer) BufferEmpty(1); Int_t nbinsx = GetNbinsX(); //*-*- Check profile compatibility if (nbinsx != p1->GetNbinsX()) { Error("Divide","Attempt to divide profiles with different number of bins"); return kFALSE; } //*-*- Reset statistics fEntries = fTsumw = fTsumw2 = fTsumwx = fTsumwx2 = fTsumwy = fTsumwy2 = 0; //*-*- Loop on bins (including underflows/overflows) Int_t bin; Double_t *cu1=0, *er1=0, *en1=0; Double_t e0,e1,c12; if (h1->InheritsFrom(TProfile::Class())) { cu1 = p1->GetW(); er1 = p1->GetW2(); en1 = p1->GetB(); } Double_t c0,c1,w,z,x; for (bin=0;bin<=nbinsx+1;bin++) { c0 = fArray[bin]; if (cu1) c1 = cu1[bin]; else c1 = h1->GetBinContent(bin); if (c1) w = c0/c1; else w = 0; fArray[bin] = w; z = TMath::Abs(w); x = fXaxis.GetBinCenter(bin); fEntries++; fTsumw += z; fTsumw2 += z*z; fTsumwx += z*x; fTsumwx2 += z*x*x; fTsumwy += z*c1; fTsumwx2 += z*c1*c1; e0 = fSumw2.fArray[bin]; if (er1) e1 = er1[bin]; else {e1 = h1->GetBinError(bin); e1*=e1;} c12= c1*c1; if (!c1) fSumw2.fArray[bin] = 0; else fSumw2.fArray[bin] = (e0*c1*c1 + e1*c0*c0)/(c12*c12); if (!en1) continue; if (!en1[bin]) fBinEntries.fArray[bin] = 0; else fBinEntries.fArray[bin] /= en1[bin]; } // mantaining the correct sum of weights square is not supported when dividing // bin error resulting from division of profile needs to be checked if (fBinSumw2.fN) { Warning("Divide","Cannot preserve during the division of profiles the sum of bin weight square"); fBinSumw2 = TArrayD(); } return kTRUE; } //______________________________________________________________________________ Bool_t TProfile::Divide(const TH1 *h1, const TH1 *h2, Double_t c1, Double_t c2, Option_t *option) { //*-*-*-*-*Replace contents of this profile by the division of h1 by h2*-*-* //*-* ============================================================ // // this = c1*h1/(c2*h2) // // The function return kFALSE if the divide operation failed TString opt = option; opt.ToLower(); Bool_t binomial = kFALSE; if (opt.Contains("b")) binomial = kTRUE; if (!h1 || !h2) { Error("Divide","Attempt to divide a non-existing profile"); return kFALSE; } if (!h1->InheritsFrom(TProfile::Class())) { Error("Divide","Attempt to divide a non-profile object"); return kFALSE; } TProfile *p1 = (TProfile*)h1; if (!h2->InheritsFrom(TProfile::Class())) { Error("Divide","Attempt to divide by a non-profile object"); return kFALSE; } TProfile *p2 = (TProfile*)h2; // delete buffer if it is there since it will become invalid if (fBuffer) BufferEmpty(1); Int_t nbinsx = GetNbinsX(); //*-*- Check histogram compatibility if (nbinsx != p1->GetNbinsX() || nbinsx != p2->GetNbinsX()) { Error("Divide","Attempt to divide profiles with different number of bins"); return kFALSE; } if (!c2) { Error("Divide","Coefficient of dividing profile cannot be zero"); return kFALSE; } //THE ALGORITHM COMPUTING THE ERRORS IS WRONG. HELP REQUIRED printf("WARNING!!: The algorithm in TProfile::Divide computing the errors is not accurate\n"); printf(" Instead of Divide(TProfile *h1, TProfile *h2, do:\n"); printf(" TH1D *p1 = h1->ProjectionX();\n"); printf(" TH1D *p2 = h2->ProjectionX();\n"); printf(" p1->Divide(p2);\n"); //*-*- Reset statistics fEntries = fTsumw = fTsumw2 = fTsumwx = fTsumwx2 = 0; //*-*- Loop on bins (including underflows/overflows) Int_t bin; Double_t *cu1 = p1->GetW(); Double_t *cu2 = p2->GetW(); Double_t *er1 = p1->GetW2(); Double_t *er2 = p2->GetW2(); Double_t *en1 = p1->GetB(); Double_t *en2 = p2->GetB(); Double_t b1,b2,w,z,x,ac1,ac2; //d1 = c1*c1; //d2 = c2*c2; ac1 = TMath::Abs(c1); ac2 = TMath::Abs(c2); for (bin=0;bin<=nbinsx+1;bin++) { b1 = cu1[bin]; b2 = cu2[bin]; if (b2) w = c1*b1/(c2*b2); else w = 0; fArray[bin] = w; z = TMath::Abs(w); x = fXaxis.GetBinCenter(bin); fEntries++; fTsumw += z; fTsumw2 += z*z; fTsumwx += z*x; fTsumwx2 += z*x*x; //fTsumwy += z*x; //fTsumwy2 += z*x*x; Double_t e1 = er1[bin]; Double_t e2 = er2[bin]; //Double_t b22= b2*b2*d2; Double_t b22= b2*b2*TMath::Abs(c2); if (!b2) fSumw2.fArray[bin] = 0; else { if (binomial) { fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/b2); } else { //fSumw2.fArray[bin] = d1*d2*(e1*b2*b2 + e2*b1*b1)/(b22*b22); fSumw2.fArray[bin] = ac1*ac2*(e1*b2*b2 + e2*b1*b1)/(b22*b22); } } if (en2[bin]) fBinEntries.fArray[bin] = en1[bin]/en2[bin]; else fBinEntries.fArray[bin] = 0; } // mantaining the correct sum of weights square is not supported when dividing // bin error resulting from division of profile needs to be checked if (fBinSumw2.fN) { Warning("Divide","Cannot preserve during the division of profiles the sum of bin weight square"); fBinSumw2 = TArrayD(); } return kTRUE; } //______________________________________________________________________________ Int_t TProfile::Fill(Double_t x, Double_t y) { //*-*-*-*-*-*-*-*-*-*-*Fill a Profile histogram (no weights)*-*-*-*-*-*-*-* //*-* ===================================== if (fBuffer) return BufferFill(x,y,1); Int_t bin; if (fYmin != fYmax) { if (y <fYmin || y> fYmax || TMath::IsNaN(y) ) return -1; } fEntries++; bin =fXaxis.FindBin(x); AddBinContent(bin, y); fSumw2.fArray[bin] += (Double_t)y*y; fBinEntries.fArray[bin] += 1; if (fBinSumw2.fN) fBinSumw2.fArray[bin] += 1; if (bin == 0 || bin > fXaxis.GetNbins()) { if (!fgStatOverflows) return -1; } fTsumw++; fTsumw2++; fTsumwx += x; fTsumwx2 += x*x; fTsumwy += y; fTsumwy2 += y*y; return bin; } //______________________________________________________________________________ Int_t TProfile::Fill(const char *namex, Double_t y) { // Fill a Profile histogram (no weights) // Int_t bin; if (fYmin != fYmax) { if (y <fYmin || y> fYmax || TMath::IsNaN(y) ) return -1; } fEntries++; bin =fXaxis.FindBin(namex); AddBinContent(bin, y); fSumw2.fArray[bin] += (Double_t)y*y; fBinEntries.fArray[bin] += 1; if (fBinSumw2.fN) fBinSumw2.fArray[bin] += 1; if (bin == 0 || bin > fXaxis.GetNbins()) { if (!fgStatOverflows) return -1; } Double_t x = fXaxis.GetBinCenter(bin); fTsumw++; fTsumw2++; fTsumwx += x; fTsumwx2 += x*x; fTsumwy += y; fTsumwy2 += y*y; return bin; } //______________________________________________________________________________ Int_t TProfile::Fill(Double_t x, Double_t y, Double_t w) { //*-*-*-*-*-*-*-*-*-*-*Fill a Profile histogram with weights*-*-*-*-*-*-*-* //*-* ===================================== if (fBuffer) return BufferFill(x,y,w); Int_t bin; if (fYmin != fYmax) { if (y <fYmin || y> fYmax || TMath::IsNaN(y) ) return -1; } Double_t u= w; fEntries++; bin =fXaxis.FindBin(x); AddBinContent(bin, u*y); fSumw2.fArray[bin] += u*y*y; if (!fBinSumw2.fN && u != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2(); // must be called before accumulating the entries if (fBinSumw2.fN) fBinSumw2.fArray[bin] += u*u; fBinEntries.fArray[bin] += u; if (bin == 0 || bin > fXaxis.GetNbins()) { if (!fgStatOverflows) return -1; } fTsumw += u; fTsumw2 += u*u; fTsumwx += u*x; fTsumwx2 += u*x*x; fTsumwy += u*y; fTsumwy2 += u*y*y; return bin; } //______________________________________________________________________________ Int_t TProfile::Fill(const char *namex, Double_t y, Double_t w) { // Fill a Profile histogram with weights // Int_t bin; if (fYmin != fYmax) { if (y <fYmin || y> fYmax || TMath::IsNaN(y) ) return -1; } Double_t u= w; // (w > 0 ? w : -w); fEntries++; bin =fXaxis.FindBin(namex); AddBinContent(bin, u*y); fSumw2.fArray[bin] += u*y*y; if (!fBinSumw2.fN && u != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2(); // must be called before accumulating the entries if (fBinSumw2.fN) fBinSumw2.fArray[bin] += u*u; fBinEntries.fArray[bin] += u; if (bin == 0 || bin > fXaxis.GetNbins()) { if (!fgStatOverflows) return -1; } Double_t x = fXaxis.GetBinCenter(bin); fTsumw += u; fTsumw2 += u*u; fTsumwx += u*x; fTsumwx2 += u*x*x; fTsumwy += u*y; fTsumwy2 += u*y*y; return bin; } //______________________________________________________________________________ void TProfile::FillN(Int_t ntimes, const Double_t *x, const Double_t *y, const Double_t *w, Int_t stride) { //*-*-*-*-*-*-*-*-*-*-*Fill a Profile histogram with weights*-*-*-*-*-*-*-* //*-* ===================================== Int_t bin,i; ntimes *= stride; Int_t ifirst = 0; //If a buffer is activated, fill buffer // (note that this function must not be called from TH2::BufferEmpty) if (fBuffer) { for (i=0;i<ntimes;i+=stride) { if (!fBuffer) break; // buffer can be deleted in BufferFill when is empty if (w) BufferFill(x[i],y[i],w[i]); else BufferFill(x[i], y[i], 1.); } // fill the remaining entries if the buffer has been deleted if (i < ntimes && fBuffer==0) ifirst = i; // start from i else return; } for (i=ifirst;i<ntimes;i+=stride) { if (fYmin != fYmax) { if (y[i] <fYmin || y[i]> fYmax || TMath::IsNaN(y[i])) continue; } Double_t u = (w) ? w[i] : 1; // (w[i] > 0 ? w[i] : -w[i]); fEntries++; bin =fXaxis.FindBin(x[i]); AddBinContent(bin, u*y[i]); fSumw2.fArray[bin] += u*y[i]*y[i]; if (!fBinSumw2.fN && u != 1.0 && !TestBit(TH1::kIsNotW)) Sumw2(); // must be called before accumulating the entries if (fBinSumw2.fN) fBinSumw2.fArray[bin] += u*u; fBinEntries.fArray[bin] += u; if (bin == 0 || bin > fXaxis.GetNbins()) { if (!fgStatOverflows) continue; } fTsumw += u; fTsumw2 += u*u; fTsumwx += u*x[i]; fTsumwx2 += u*x[i]*x[i]; fTsumwy += u*y[i]; fTsumwy2 += u*y[i]*y[i]; } } //______________________________________________________________________________ Double_t TProfile::GetBinContent(Int_t bin) const { //*-*-*-*-*-*-*Return bin content of a Profile histogram*-*-*-*-*-*-*-*-*-* //*-* ========================================= if (fBuffer) ((TProfile*)this)->BufferEmpty(); if (bin < 0 || bin >= fNcells) return 0; if (fBinEntries.fArray[bin] == 0) return 0; if (!fArray) return 0; return fArray[bin]/fBinEntries.fArray[bin]; } //______________________________________________________________________________ Double_t TProfile::GetBinEntries(Int_t bin) const { //*-*-*-*-*-*-*Return bin entries of a Profile histogram*-*-*-*-*-*-*-*-*-* //*-* ========================================= if (fBuffer) ((TProfile*)this)->BufferEmpty(); if (bin < 0 || bin >= fNcells) return 0; return fBinEntries.fArray[bin]; } //______________________________________________________________________________ Double_t TProfile::GetBinEffectiveEntries(Int_t bin) const { // Return bin effective entries for a weighted filled Profile histogram. // In case of an unweighted profile, it is equivalent to the number of entries per bin // The effective entries is defined as the square of the sum of the weights divided by the // sum of the weights square. // TProfile::Sumw2() must be called before filling the profile with weights. // Only by calling this method the sum of the square of the weights per bin is stored. // //*-* ========================================= return TProfileHelper::GetBinEffectiveEntries((TProfile*)this, bin); } //______________________________________________________________________________ Double_t TProfile::GetBinError(Int_t bin) const { // *-*-*-*-*-*-*Return bin error of a Profile histogram*-*-*-*-*-*-*-*-*-* // *-* ======================================= // // Computing errors: A moving field // ================================= // The computation of errors for a TProfile has evolved with the versions // of ROOT. The difficulty is in computing errors for bins with low statistics. // - prior to version 3.00, we had no special treatment of low statistic bins. // As a result, these bins had huge errors. The reason is that the // expression eprim2 is very close to 0 (rounding problems) or 0. // - in version 3.00 (18 Dec 2000), the algorithm is protected for values of // eprim2 very small and the bin errors set to the average bin errors, following // recommendations from a group of users. // - in version 3.01 (19 Apr 2001), it is realized that the algorithm above // should be applied only to low statistic bins. // - in version 3.02 (26 Sep 2001), the same group of users recommend instead // to take two times the average error on all bins for these low // statistics bins giving a very small value for eprim2. // - in version 3.04 (Nov 2002), the algorithm is modified/protected for the case // when a TProfile is projected (ProjectionX). The previous algorithm // generated a N^2 problem when projecting a TProfile with a large number of // bins (eg 100000). // - in version 3.05/06, a new static function TProfile::Approximate // is introduced to enable or disable (default) the approximation. // // Ideas for improvements of this algorithm are welcome. No suggestions // received since our call for advice to roottalk in Jul 2002. // see for instance: http://root.cern.ch/root/roottalk/roottalk02/2916.html return TProfileHelper::GetBinError((TProfile*)this, bin); } //______________________________________________________________________________ Option_t *TProfile::GetErrorOption() const { //*-*-*-*-*-*-*-*-*-*Return option to compute profile errors*-*-*-*-*-*-*-*-* //*-* ======================================= if (fErrorMode == kERRORSPREAD) return "s"; if (fErrorMode == kERRORSPREADI) return "i"; if (fErrorMode == kERRORSPREADG) return "g"; return ""; } //______________________________________________________________________________ void TProfile::GetStats(Double_t *stats) const { // fill the array stats from the contents of this profile // The array stats must be correctly dimensionned in the calling program. // stats[0] = sumw // stats[1] = sumw2 // stats[2] = sumwx // stats[3] = sumwx2 // stats[4] = sumwy // stats[5] = sumwy2 // // If no axis-subrange is specified (via TAxis::SetRange), the array stats // is simply a copy of the statistics quantities computed at filling time. // If a sub-range is specified, the function recomputes these quantities // from the bin contents in the current axis range. if (fBuffer) ((TProfile*)this)->BufferEmpty(); // Loop on bins Int_t bin, binx; if (fTsumw == 0 || fXaxis.TestBit(TAxis::kAxisRange)) { for (bin=0;bin<6;bin++) stats[bin] = 0; if (!fBinEntries.fArray) return; Int_t firstBinX = fXaxis.GetFirst(); Int_t lastBinX = fXaxis.GetLast(); // include underflow/overflow if TH1::StatOverflows(kTRUE) in case no range is set on the axis if (fgStatOverflows && !fXaxis.TestBit(TAxis::kAxisRange)) { if (firstBinX == 1) firstBinX = 0; if (lastBinX == fXaxis.GetNbins() ) lastBinX += 1; } for (binx = firstBinX; binx <= lastBinX; binx++) { Double_t w = fBinEntries.fArray[binx]; Double_t w2 = (fBinSumw2.fN ? fBinSumw2.fArray[binx] : w); Double_t x = fXaxis.GetBinCenter(binx); stats[0] += w; stats[1] += w2; stats[2] += w*x; stats[3] += w*x*x; stats[4] += fArray[binx]; stats[5] += fSumw2.fArray[binx]; } } else { if (fTsumwy == 0 && fTsumwy2 == 0) { //this case may happen when processing TProfiles with version <=3 TProfile *p = (TProfile*)this; // chheting with const for (binx=fXaxis.GetFirst();binx<=fXaxis.GetLast();binx++) { p->fTsumwy += fArray[binx]; p->fTsumwy2 += fSumw2.fArray[binx]; } } stats[0] = fTsumw; stats[1] = fTsumw2; stats[2] = fTsumwx; stats[3] = fTsumwx2; stats[4] = fTsumwy; stats[5] = fTsumwy2; } } //___________________________________________________________________________ void TProfile::LabelsDeflate(Option_t *option) { // Reduce the number of bins for this axis to the number of bins having a label. TProfileHelper::LabelsDeflate(this, option); } //___________________________________________________________________________ void TProfile::LabelsInflate(Option_t *options) { // Double the number of bins for axis. // Refill histogram // This function is called by TAxis::FindBin(const char *label) TProfileHelper::LabelsInflate(this, options); } //___________________________________________________________________________ void TProfile::LabelsOption(Option_t *option, Option_t * /*ax */) { // Set option(s) to draw axis with labels // option = "a" sort by alphabetic order // = ">" sort by decreasing values // = "<" sort by increasing values // = "h" draw labels horizonthal // = "v" draw labels vertical // = "u" draw labels up (end of label right adjusted) // = "d" draw labels down (start of label left adjusted) THashList *labels = fXaxis.GetLabels(); if (!labels) { Warning("LabelsOption","Cannot sort. No labels"); return; } TString opt = option; opt.ToLower(); if (opt.Contains("h")) { fXaxis.SetBit(TAxis::kLabelsHori); fXaxis.ResetBit(TAxis::kLabelsVert); fXaxis.ResetBit(TAxis::kLabelsDown); fXaxis.ResetBit(TAxis::kLabelsUp); } if (opt.Contains("v")) { fXaxis.SetBit(TAxis::kLabelsVert); fXaxis.ResetBit(TAxis::kLabelsHori); fXaxis.ResetBit(TAxis::kLabelsDown); fXaxis.ResetBit(TAxis::kLabelsUp); } if (opt.Contains("u")) { fXaxis.SetBit(TAxis::kLabelsUp); fXaxis.ResetBit(TAxis::kLabelsVert); fXaxis.ResetBit(TAxis::kLabelsDown); fXaxis.ResetBit(TAxis::kLabelsHori); } if (opt.Contains("d")) { fXaxis.SetBit(TAxis::kLabelsDown); fXaxis.ResetBit(TAxis::kLabelsVert); fXaxis.ResetBit(TAxis::kLabelsHori); fXaxis.ResetBit(TAxis::kLabelsUp); } Int_t sort = -1; if (opt.Contains("a")) sort = 0; if (opt.Contains(">")) sort = 1; if (opt.Contains("<")) sort = 2; if (sort < 0) return; Int_t n = TMath::Min(fXaxis.GetNbins(), labels->GetSize()); Int_t *a = new Int_t[n+2]; Int_t i,j; Double_t *cont = new Double_t[n+2]; Double_t *sumw = new Double_t[n+2]; Double_t *errors = new Double_t[n+2]; Double_t *ent = new Double_t[n+2]; THashList *labold = new THashList(labels->GetSize(),1); TIter nextold(labels); TObject *obj; while ((obj=nextold())) { labold->Add(obj); } labels->Clear(); if (sort > 0) { //---sort by values of bins for (i=1;i<=n;i++) { sumw[i-1] = fArray[i]; errors[i-1] = fSumw2.fArray[i]; ent[i-1] = fBinEntries.fArray[i]; if (fBinEntries.fArray[i] == 0) cont[i-1] = 0; else cont[i-1] = fArray[i]/fBinEntries.fArray[i]; } if (sort ==1) TMath::Sort(n,cont,a,kTRUE); //sort by decreasing values else TMath::Sort(n,cont,a,kFALSE); //sort by increasing values for (i=1;i<=n;i++) { fArray[i] = sumw[a[i-1]]; fSumw2.fArray[i] = errors[a[i-1]]; fBinEntries.fArray[i] = ent[a[i-1]]; } for (i=1;i<=n;i++) { obj = labold->At(a[i-1]); labels->Add(obj); obj->SetUniqueID(i); } } else { //---alphabetic sort const UInt_t kUsed = 1<<18; TObject *objk=0; a[0] = 0; a[n+1] = n+1; for (i=1;i<=n;i++) { const char *label = "zzzzzzzzzzzz"; for (j=1;j<=n;j++) { obj = labold->At(j-1); if (!obj) continue; if (obj->TestBit(kUsed)) continue; //use strcasecmp for case non-sensitive sort (may be an option) if (strcmp(label,obj->GetName()) < 0) continue; objk = obj; a[i] = j; label = obj->GetName(); } if (objk) { objk->SetUniqueID(i); labels->Add(objk); objk->SetBit(kUsed); } } for (i=1;i<=n;i++) { obj = labels->At(i-1); if (!obj) continue; obj->ResetBit(kUsed); } for (i=1;i<=n;i++) { sumw[i] = fArray[a[i]]; errors[i] = fSumw2.fArray[a[i]]; ent[i] = fBinEntries.fArray[a[i]]; } for (i=1;i<=n;i++) { fArray[i] = sumw[i]; fSumw2.fArray[i] = errors[i]; fBinEntries.fArray[i] = ent[i]; } } delete labold; if (a) delete [] a; if (sumw) delete [] sumw; if (cont) delete [] cont; if (errors) delete [] errors; if (ent) delete [] ent; } //______________________________________________________________________________ Long64_t TProfile::Merge(TCollection *li) { //Merge all histograms in the collection in this histogram. //This function computes the min/max for the x axis, //compute a new number of bins, if necessary, //add bin contents, errors and statistics. //If overflows are present and limits are different the function will fail. //The function returns the total number of entries in the result histogram //if the merge is successfull, -1 otherwise. // //IMPORTANT remark. The axis x may have different number //of bins and different limits, BUT the largest bin width must be //a multiple of the smallest bin width and the upper limit must also //be a multiple of the bin width. return TProfileHelper::Merge(this, li); } //______________________________________________________________________________ Bool_t TProfile::Multiply(TF1 *f1, Double_t c1) { // Performs the operation: this = this*c1*f1 // // The function return kFALSE if the Multiply operation failed if (!f1) { Error("Multiply","Attempt to multiply by a null function"); return kFALSE; } Int_t nbinsx = GetNbinsX(); //*-*- Add statistics Double_t xx[1], cf1, ac1 = TMath::Abs(c1); Double_t s1[10]; Int_t i; for (i=0;i<10;i++) {s1[i] = 0;} PutStats(s1); SetMinimum(); SetMaximum(); //*-*- Loop on bins (including underflows/overflows) Int_t bin; for (bin=0;bin<=nbinsx+1;bin++) { xx[0] = fXaxis.GetBinCenter(bin); if (!f1->IsInside(xx)) continue; TF1::RejectPoint(kFALSE); cf1 = f1->EvalPar(xx); if (TF1::RejectedPoint()) continue; fArray[bin] *= c1*cf1; //see http://savannah.cern.ch/bugs/?func=detailitem&item_id=14851 //fSumw2.fArray[bin] *= c1*c1*cf1*cf1; fSumw2.fArray[bin] *= ac1*cf1*cf1; //fBinEntries.fArray[bin] *= ac1*TMath::Abs(cf1); } return kTRUE; } //______________________________________________________________________________ Bool_t TProfile::Multiply(const TH1 *) { //*-*-*-*-*-*-*-*-*-*-*Multiply this profile by h1*-*-*-*-*-*-*-*-*-*-*-*-* //*-* ============================= // // this = this*h1 // Error("Multiply","Multiplication of profile histograms not implemented"); return kFALSE; } //______________________________________________________________________________ Bool_t TProfile::Multiply(const TH1 *, const TH1 *, Double_t, Double_t, Option_t *) { //*-*-*-*-*Replace contents of this profile by multiplication of h1 by h2*-* //*-* ================================================================ // // this = (c1*h1)*(c2*h2) // Error("Multiply","Multiplication of profile histograms not implemented"); return kFALSE; } //______________________________________________________________________________ TH1D *TProfile::ProjectionX(const char *name, Option_t *option) const { //*-*-*-*-*Project this profile into a 1-D histogram along X*-*-*-*-*-*-* //*-* ================================================= // // The projection is always of the type TH1D. // // if option "E" is specified the errors of the projected histogram are computed and set // to be equal to the errors of the profile. // Option "E" is defined as the default one in the header file. // if option "" is specified the histogram errors are simply the sqrt of its content // if option "B" is specified, the content of bin of the returned histogram // will be equal to the GetBinEntries(bin) of the profile, // otherwise (default) it will be equal to GetBinContent(bin) // if option "C=E" the bin contents of the projection are set to the // bin errors of the profile // if option "W" is specified the bin content of the projected histogram is set to the // product of the bin content of the profile and the entries. // With this option the returned histogram will be equivalent to the one obtained by // filling directly a TH1D using the 2-nd value as a weight. // This makes sense only for profile filled with weights =1. If not, the error of the // projected histogram obtained with this option will not be correct. TString opt = option; opt.ToLower(); Int_t nx = fXaxis.GetNbins(); // Create the projection histogram TString pname = name; if (pname == "_px") { pname = GetName(); pname.Append("_px"); } TH1D *h1; const TArrayD *bins = fXaxis.GetXbins(); if (bins->fN == 0) { h1 = new TH1D(pname,GetTitle(),nx,fXaxis.GetXmin(),fXaxis.GetXmax()); } else { h1 = new TH1D(pname,GetTitle(),nx,bins->fArray); } Bool_t computeErrors = kFALSE; Bool_t cequalErrors = kFALSE; Bool_t binEntries = kFALSE; Bool_t binWeight = kFALSE; if (opt.Contains("b")) binEntries = kTRUE; if (opt.Contains("e")) computeErrors = kTRUE; if (opt.Contains("w")) binWeight = kTRUE; if (opt.Contains("c=e")) {cequalErrors = kTRUE; computeErrors=kFALSE;} if (computeErrors || binWeight || (binEntries && fBinSumw2.fN) ) h1->Sumw2(); // Fill the projected histogram Double_t cont; for (Int_t bin =0;bin<=nx+1;bin++) { if (binEntries) cont = GetBinEntries(bin); else if (cequalErrors) cont = GetBinError(bin); else if (binWeight) cont = fArray[bin]; // bin content * bin entries else cont = GetBinContent(bin); // default case h1->SetBinContent(bin ,cont); // if option E projected histogram errors are same as profile if (computeErrors ) h1->SetBinError(bin , GetBinError(bin) ); // in case of option W bin error is deduced from bin sum of z**2 values of profile // this is correct only if the profile is filled with weights =1 if (binWeight) h1->GetSumw2()->fArray[bin] = fSumw2.fArray[bin]; // in case of bin entries and profile is weighted, we need to set also the bin error if (binEntries && fBinSumw2.fN ) { R__ASSERT( h1->GetSumw2() ); h1->GetSumw2()->fArray[bin] = fBinSumw2.fArray[bin]; } } // Copy the axis attributes and the axis labels if needed. h1->GetXaxis()->ImportAttributes(this->GetXaxis()); h1->GetYaxis()->ImportAttributes(this->GetYaxis()); THashList* labels=this->GetXaxis()->GetLabels(); if (labels) { TIter iL(labels); TObjString* lb; Int_t i = 1; while ((lb=(TObjString*)iL())) { h1->GetXaxis()->SetBinLabel(i,lb->String().Data()); i++; } } h1->SetEntries(fEntries); return h1; } //______________________________________________________________________________ void TProfile::PutStats(Double_t *stats) { // Replace current statistics with the values in array stats fTsumw = stats[0]; fTsumw2 = stats[1]; fTsumwx = stats[2]; fTsumwx2 = stats[3]; fTsumwy = stats[4]; fTsumwy2 = stats[5]; } //______________________________________________________________________________ TH1 *TProfile::Rebin(Int_t ngroup, const char*newname, const Double_t *xbins) { //*-*-*-*-*Rebin this profile grouping ngroup bins together*-*-*-*-*-*-*-*-* //*-* ================================================ // -case 1 xbins=0 // if newname is not blank a new temporary profile hnew is created. // else the current profile is modified (default) // The parameter ngroup indicates how many bins of this have to me merged // into one bin of hnew // If the original profile has errors stored (via Sumw2), the resulting // profile has new errors correctly calculated. // // examples: if hp is an existing TProfile histogram with 100 bins // hp->Rebin(); //merges two bins in one in hp: previous contents of hp are lost // hp->Rebin(5); //merges five bins in one in hp // TProfile *hnew = hp->Rebin(5,"hnew"); // creates a new profile hnew // //merging 5 bins of hp in one bin // // NOTE: If ngroup is not an exact divider of the number of bins, // the top limit of the rebinned profile is changed // to the upper edge of the bin=newbins*ngroup and the corresponding // bins are added to the overflow bin. // Statistics will be recomputed from the new bin contents. // // -case 2 xbins!=0 // a new profile is created (you should specify newname). // The parameter ngroup is the number of variable size bins in the created profile // The array xbins must contain ngroup+1 elements that represent the low-edge // of the bins. // The data of the old bins are added to the new bin which contains the bin center // of the old bins. It is possible that information from the old binning are attached // to the under-/overflow bins of the new binning. // // examples: if hp is an existing TProfile with 100 bins // Double_t xbins[25] = {...} array of low-edges (xbins[25] is the upper edge of last bin // hp->Rebin(24,"hpnew",xbins); //creates a new variable bin size profile hpnew Int_t nbins = fXaxis.GetNbins(); Double_t xmin = fXaxis.GetXmin(); Double_t xmax = fXaxis.GetXmax(); if ((ngroup <= 0) || (ngroup > nbins)) { Error("Rebin", "Illegal value of ngroup=%d",ngroup); return 0; } if (!newname && xbins) { Error("Rebin","if xbins is specified, newname must be given"); return 0; } Int_t newbins = nbins/ngroup; if (!xbins) { Int_t nbg = nbins/ngroup; if (nbg*ngroup != nbins) { Warning("Rebin", "ngroup=%d must be an exact divider of nbins=%d",ngroup,nbins); } } else { // in the case of xbins given (rebinning in variable bins) ngroup is the new number of bins. // and number of grouped bins is not constant. // when looping for setting the contents for the new histogram we // need to loop on all bins of original histogram. Set then ngroup=nbins newbins = ngroup; ngroup = nbins; } // Save old bin contents into a new array Double_t *oldBins = new Double_t[nbins+2]; Double_t *oldCount = new Double_t[nbins+2]; Double_t *oldErrors = new Double_t[nbins+2]; Double_t *oldBinw2 = (fBinSumw2.fN ? new Double_t[nbins+2] : 0 ); Int_t bin, i; Double_t *cu1 = GetW(); Double_t *er1 = GetW2(); Double_t *en1 = GetB(); Double_t *ew1 = GetB2(); for (bin=0;bin<=nbins+1;bin++) { oldBins[bin] = cu1[bin]; oldCount[bin] = en1[bin]; oldErrors[bin] = er1[bin]; if (ew1 && fBinSumw2.fN) oldBinw2[bin] = ew1[bin]; } // create a clone of the old histogram if newname is specified TProfile *hnew = this; if ((newname && strlen(newname) > 0) || xbins) { hnew = (TProfile*)Clone(newname); } // in case of ngroup not an excat divider of nbins, // top limit is changed (see NOTE in method comment) if(!xbins && (newbins*ngroup != nbins)) { xmax = fXaxis.GetBinUpEdge(newbins*ngroup); hnew->fTsumw = 0; //stats must be reset because top bins will be moved to overflow bin } // set correctly the axis and resizes the bin arrays if(!xbins && (fXaxis.GetXbins()->GetSize() > 0)){ // for rebinning of variable bins in a constant group Double_t *bins = new Double_t[newbins+1]; for(i = 0; i <= newbins; ++i) bins[i] = fXaxis.GetBinLowEdge(1+i*ngroup); hnew->SetBins(newbins,bins); //this also changes the bin array's delete [] bins; } else if (xbins) { // when rebinning in variable bins hnew->SetBins(newbins,xbins); } else { hnew->SetBins(newbins,xmin,xmax); } // merge bin contents ignoring now underflow/overflows if (fBinSumw2.fN) hnew->Sumw2(); // Start merging only once the new lowest edge is reached Int_t startbin = 1; const Double_t newxmin = hnew->GetXaxis()->GetBinLowEdge(1); while( fXaxis.GetBinCenter(startbin) < newxmin && startbin <= nbins ) { startbin++; } Double_t *cu2 = hnew->GetW(); Double_t *er2 = hnew->GetW2(); Double_t *en2 = hnew->GetB(); Double_t *ew2 = hnew->GetB2(); Int_t oldbin = startbin; Double_t binContent, binCount, binError, binSumw2; for (bin = 1;bin<=newbins;bin++) { binContent = 0; binCount = 0; binError = 0; binSumw2 = 0; //for xbins != 0: ngroup == nbins Int_t imax = ngroup; Double_t xbinmax = hnew->GetXaxis()->GetBinUpEdge(bin); for (i=0;i<ngroup;i++) { if((hnew == this && (oldbin+i > nbins)) || (hnew != this && (fXaxis.GetBinCenter(oldbin+i) > xbinmax))) { imax = i; break; } binContent += oldBins[oldbin+i]; binCount += oldCount[oldbin+i]; binError += oldErrors[oldbin+i]; if (fBinSumw2.fN) binSumw2 += oldBinw2[oldbin+i]; } cu2[bin] = binContent; er2[bin] = binError; en2[bin] = binCount; if (fBinSumw2.fN) ew2[bin] = binSumw2; oldbin += imax; } // set bin statistics for underflow bin binContent = 0; binCount = 0; binError = 0; binSumw2 = 0; for(i=0;i<startbin;i++) { binContent += oldBins[i]; binCount += oldCount[i]; binError += oldErrors[i]; if (fBinSumw2.fN) binSumw2 += oldBinw2[i]; } hnew->fArray[0] = binContent; hnew->fBinEntries[0] = binCount; hnew->fSumw2[0] = binError; if ( fBinSumw2.fN ) hnew->fBinSumw2[0] = binSumw2; // set bin statistics for overflow bin binContent = 0; binCount = 0; binError = 0; binSumw2 = 0; for(i=oldbin;i<=nbins+1;i++) { binContent += oldBins[i]; binCount += oldCount[i]; binError += oldErrors[i]; if (fBinSumw2.fN) binSumw2 += oldBinw2[i]; } hnew->fArray[newbins+1] = binContent; hnew->fBinEntries[newbins+1] = binCount; hnew->fSumw2[newbins+1] = binError; if ( fBinSumw2.fN ) hnew->fBinSumw2[newbins+1] = binSumw2; delete [] oldBins; delete [] oldCount; delete [] oldErrors; if (oldBinw2) delete [] oldBinw2; return hnew; } //______________________________________________________________________________ void TProfile::ExtendAxis(Double_t x, TAxis *axis) { // Profile histogram is resized along x axis such that x is in the axis range. // The new axis limits are recomputed by doubling iteratively // the current axis range until the specified value x is within the limits. // The algorithm makes a copy of the histogram, then loops on all bins // of the old histogram to fill the extended histogram. // Takes into account errors (Sumw2) if any. // The axis must be extendable before invoking this function. // Ex: h->GetXaxis()->SetCanExtend(kTRUE) TProfile* hold = TProfileHelper::ExtendAxis(this, x, axis); if ( hold ) { fTsumwy = hold->fTsumwy; fTsumwy2 = hold->fTsumwy2; delete hold; } } //______________________________________________________________________________ void TProfile::Reset(Option_t *option) { //*-*-*-*-*-*-*-*-*-*Reset contents of a Profile histogram*-*-*-*-*-*-*-*-* //*-* ===================================== TH1D::Reset(option); fBinEntries.Reset(); fBinSumw2.Reset(); TString opt = option; opt.ToUpper(); if (opt.Contains("ICE") && !opt.Contains("S")) return; fTsumwy = 0; fTsumwy2 = 0; } //______________________________________________________________________________ void TProfile::SavePrimitive(std::ostream &out, Option_t *option /*= ""*/) { // Save primitive as a C++ statement(s) on output stream out //Note the following restrictions in the code generated: // - variable bin size not implemented // - SetErrorOption not implemented Bool_t nonEqiX = kFALSE; Int_t i; // Check if the profile has equidistant X bins or not. If not, we // create an array holding the bins. if (GetXaxis()->GetXbins()->fN && GetXaxis()->GetXbins()->fArray) { nonEqiX = kTRUE; out << " Double_t xAxis[" << GetXaxis()->GetXbins()->fN << "] = {"; for (i = 0; i < GetXaxis()->GetXbins()->fN; i++) { if (i != 0) out << ", "; out << GetXaxis()->GetXbins()->fArray[i]; } out << "}; " << std::endl; } char quote = '"'; out<<" "<<std::endl; out<<" "<<ClassName()<<" *"; //histogram pointer has by default teh histogram name. //however, in case histogram has no directory, it is safer to add a incremental suffix static Int_t hcounter = 0; TString histName = GetName(); if (!fDirectory) { hcounter++; histName += "__"; histName += hcounter; } const char *hname = histName.Data(); out<<hname<<" = new "<<ClassName()<<"("<<quote<<GetName()<<quote<<","<<quote<<GetTitle()<<quote <<","<<GetXaxis()->GetNbins(); if (nonEqiX) out << ", xAxis"; else out << "," << GetXaxis()->GetXmin() << "," << GetXaxis()->GetXmax() <<","<<quote<<GetErrorOption()<<quote<<");"<<std::endl; // save bin entries Int_t bin; for (bin=0;bin<fNcells;bin++) { Double_t bi = GetBinEntries(bin); if (bi) { out<<" "<<hname<<"->SetBinEntries("<<bin<<","<<bi<<");"<<std::endl; } } //save bin contents for (bin=0;bin<fNcells;bin++) { Double_t bc = fArray[bin]; if (bc) { out<<" "<<hname<<"->SetBinContent("<<bin<<","<<bc<<");"<<std::endl; } } // save bin errors if (fSumw2.fN) { for (bin=0;bin<fNcells;bin++) { Double_t be = TMath::Sqrt(fSumw2.fArray[bin]); if (be) { out<<" "<<hname<<"->SetBinError("<<bin<<","<<be<<");"<<std::endl; } } } TH1::SavePrimitiveHelp(out, hname, option); } //______________________________________________________________________________ void TProfile::Scale(Double_t c1, Option_t * option) { // *-*-*-*-*Multiply this profile by a constant c1*-*-*-*-*-*-*-*-* // *-* ====================================== // // this = c1*this // // This function uses the services of TProfile::Add // TProfileHelper::Scale(this, c1, option); } //______________________________________________________________________________ void TProfile::SetBinEntries(Int_t bin, Double_t w) { //*-*-*-*-*-*-*-*-*Set the number of entries in bin*-*-*-*-*-*-*-*-*-*-*-* //*-* ================================ TProfileHelper::SetBinEntries(this, bin, w); } //______________________________________________________________________________ void TProfile::SetBins(Int_t nx, Double_t xmin, Double_t xmax) { //*-*-*-*-*-*-*-*-*Redefine x axis parameters*-*-*-*-*-*-*-*-*-*-*-* //*-* =========================== fXaxis.Set(nx,xmin,xmax); fNcells = nx+2; SetBinsLength(fNcells); } //______________________________________________________________________________ void TProfile::SetBins(Int_t nx, const Double_t *xbins) { //*-*-*-*-*-*-*-*-*Redefine x axis parameters*-*-*-*-*-*-*-*-*-*-*-* //*-* =========================== fXaxis.Set(nx,xbins); fNcells = nx+2; SetBinsLength(fNcells); } //______________________________________________________________________________ void TProfile::SetBinsLength(Int_t n) { // Set total number of bins including under/overflow // Reallocate bin contents array TH1D::SetBinsLength(n); TProfileHelper::BuildArray(this); } //______________________________________________________________________________ void TProfile::SetBuffer(Int_t buffersize, Option_t *) { // set the buffer size in units of 8 bytes (double) if (fBuffer) { BufferEmpty(); delete [] fBuffer; fBuffer = 0; } if (buffersize <= 0) { fBufferSize = 0; return; } if (buffersize < 100) buffersize = 100; fBufferSize = 1 + 3*buffersize; fBuffer = new Double_t[fBufferSize]; memset(fBuffer,0,sizeof(Double_t)*fBufferSize); } //______________________________________________________________________________ void TProfile::SetErrorOption(Option_t *option) { //*-*-*-*-*-*-*-*-*-*Set option to compute profile errors*-*-*-*-*-*-*-*-* //*-* ===================================== // // The computation of the bin errors is based on the parameter option: // option: // ' ' (Default) The bin errors are the standard error on the mean of the bin profiled values (Y), // i.e. the standard error of the bin contents. // Note that if TProfile::Approximate() is called, an approximation is used when // the spread in Y is 0 and the number of bin entries is > 0 // // 's' The bin errors are the standard deviations of the Y bin values // Note that if TProfile::Approximate() is called, an approximation is used when // the spread in Y is 0 and the number of bin entries is > 0 // // 'i' Errors are as in default case (standard errors of the bin contents) // The only difference is for the case when the spread in Y is zero. // In this case for N > 0 the error is 1./SQRT(12.*N) // // 'g' Errors are 1./SQRT(W) for W not equal to 0 and 0 for W = 0. // W is the sum in the bin of the weights of the profile. // This option is for combining measurements y +/- dy, // and the profile is filled with values y and weights w = 1/dy**2 // // See TProfile::BuildOptions for a detailed explanation of all options TProfileHelper::SetErrorOption(this, option); } //______________________________________________________________________________ void TProfile::Streamer(TBuffer &R__b) { // Stream an object of class TProfile. if (R__b.IsReading()) { UInt_t R__s, R__c; Version_t R__v = R__b.ReadVersion(&R__s, &R__c); if (R__v > 2) { R__b.ReadClassBuffer(TProfile::Class(), this, R__v, R__s, R__c); return; } //====process old versions before automatic schema evolution TH1D::Streamer(R__b); fBinEntries.Streamer(R__b); Int_t errorMode; R__b >> errorMode; fErrorMode = (EErrorType)errorMode; if (R__v < 2) { Float_t ymin,ymax; R__b >> ymin; fYmin = ymin; R__b >> ymax; fYmax = ymax; } else { R__b >> fYmin; R__b >> fYmax; } R__b.CheckByteCount(R__s, R__c, TProfile::IsA()); //====end of old versions } else { R__b.WriteClassBuffer(TProfile::Class(),this); } } //______________________________________________________________________________ void TProfile::Sumw2(Bool_t flag) { // Create/delete structure to store sum of squares of weights per bin *-*-*-*-*-*-*-* // This is needed to compute the correct statistical quantities // of a profile filled with weights // // // This function is automatically called when the histogram is created // if the static function TH1::SetDefaultSumw2 has been called before. // If flag is false the structure is deleted TProfileHelper::Sumw2(this, flag); }