// @(#)root/mathmore:$Id$
// Authors: B. List 29.4.2010

 /**********************************************************************
  *                                                                    *
  * Copyright (c) 2004 ROOT Foundation,  CERN/PH-SFT                   *
  *                                                                    *
  * This library is free software; you can redistribute it and/or      *
  * modify it under the terms of the GNU General Public License        *
  * as published by the Free Software Foundation; either version 2     *
  * of the License, or (at your option) any later version.             *
  *                                                                    *
  * This library is distributed in the hope that it will be useful,    *
  * but WITHOUT ANY WARRANTY; without even the implied warranty of     *
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU   *
  * General Public License for more details.                           *
  *                                                                    *
  * You should have received a copy of the GNU General Public License  *
  * along with this library (see file COPYING); if not, write          *
  * to the Free Software Foundation, Inc., 59 Temple Place, Suite      *
  * 330, Boston, MA 02111-1307 USA, or contact the author.             *
  *                                                                    *
  **********************************************************************/

// Header file for class VavilovAccurateQuantile
//
// Created by: blist  at Thu Apr 29 11:19:00 2010
//
// Last update: Thu Apr 29 11:19:00 2010
//
#ifndef ROOT_Math_VavilovAccurateQuantile
#define ROOT_Math_VavilovAccurateQuantile


#include "Math/IParamFunction.h"
#include "Math/VavilovAccurate.h"

#include <memory>

namespace ROOT {
namespace Math {

//____________________________________________________________________________
/**
   Class describing the Vavilov quantile function.

   The probability density function of the Vavilov distribution
   is given by:
  \f[ p(\lambda; \kappa, \beta^2) =
  \frac{1}{2 \pi i}\int_{c-i\infty}^{c+i\infty} \phi(s) e^{\lambda s} ds\f]
   where \f$\phi(s) = e^{C} e^{\psi(s)}\f$
   with  \f$ C = \kappa (1+\beta^2 \gamma )\f$
   and \f$\psi(s)&=& s \ln \kappa + (s+\beta^2 \kappa)
               \cdot \left ( \int \limits_{0}^{1}
               \frac{1 - e^{\frac{-st}{\kappa}}}{t} \,\der t- \gamma \right )
               - \kappa \, e^{\frac{-s}{\kappa}}\f$.
   \f$ \gamma = 0.5772156649\dots\f$ is Euler's constant.

   The parameters are:
   - 0: Norm: Normalization constant
   - 1: x0:   Location parameter
   - 2: xi:   Width parameter
   - 3: kappa: Parameter \f$\kappa\f$ of the Vavilov distribution
   - 4: beta2: Parameter \f$\beta^2\f$ of the Vavilov distribution

   Benno List, June 2010


   @ingroup StatFunc
 */


class VavilovAccurateQuantile: public IParametricFunctionOneDim {
   public:

      /**
         Default constructor
      */
      VavilovAccurateQuantile();

      /**
         Constructor with parameter values
         @param p vector of doubles containing the parameter values (Norm, x0, xi, kappa, beta2).
      */
      VavilovAccurateQuantile(const double *p);

      /**
         Destructor
      */
      virtual ~VavilovAccurateQuantile ();

      /**
         Access the parameter values
      */
      virtual const double * Parameters() const;

      /**
         Set the parameter values
         @param p vector of doubles containing the parameter values (Norm, x0, xi, kappa, beta2).

      */
      virtual void SetParameters(const double * p );

      /**
         Return the number of Parameters
      */
      virtual unsigned int NPar() const;

      /**
         Return the name of the i-th parameter (starting from zero)
       */
      virtual std::string ParameterName(unsigned int i) const;

      /**
         Evaluate the function

       @param x The Quantile \f$z\f$ , \f$0 \le z \le 1\f$
       */
      virtual double DoEval(double x) const;

      /**
         Evaluate the function, using parameters p

       @param x The Quantile \f$z\f$, \f$0 \le z \le 1\f$
         @param p vector of doubles containing the parameter values (Norm, x0, xi, kappa, beta2).
       */
      virtual double DoEvalPar(double x, const double * p) const;

      /**
         Return a clone of the object
       */
      virtual IBaseFunctionOneDim  * Clone() const;

   private:
     double fP[5];

};


} // namespace Math
} // namespace ROOT

#endif /* ROOT_Math_VavilovAccurateQuantile */
 VavilovAccurateQuantile.h:1
 VavilovAccurateQuantile.h:2
 VavilovAccurateQuantile.h:3
 VavilovAccurateQuantile.h:4
 VavilovAccurateQuantile.h:5
 VavilovAccurateQuantile.h:6
 VavilovAccurateQuantile.h:7
 VavilovAccurateQuantile.h:8
 VavilovAccurateQuantile.h:9
 VavilovAccurateQuantile.h:10
 VavilovAccurateQuantile.h:11
 VavilovAccurateQuantile.h:12
 VavilovAccurateQuantile.h:13
 VavilovAccurateQuantile.h:14
 VavilovAccurateQuantile.h:15
 VavilovAccurateQuantile.h:16
 VavilovAccurateQuantile.h:17
 VavilovAccurateQuantile.h:18
 VavilovAccurateQuantile.h:19
 VavilovAccurateQuantile.h:20
 VavilovAccurateQuantile.h:21
 VavilovAccurateQuantile.h:22
 VavilovAccurateQuantile.h:23
 VavilovAccurateQuantile.h:24
 VavilovAccurateQuantile.h:25
 VavilovAccurateQuantile.h:26
 VavilovAccurateQuantile.h:27
 VavilovAccurateQuantile.h:28
 VavilovAccurateQuantile.h:29
 VavilovAccurateQuantile.h:30
 VavilovAccurateQuantile.h:31
 VavilovAccurateQuantile.h:32
 VavilovAccurateQuantile.h:33
 VavilovAccurateQuantile.h:34
 VavilovAccurateQuantile.h:35
 VavilovAccurateQuantile.h:36
 VavilovAccurateQuantile.h:37
 VavilovAccurateQuantile.h:38
 VavilovAccurateQuantile.h:39
 VavilovAccurateQuantile.h:40
 VavilovAccurateQuantile.h:41
 VavilovAccurateQuantile.h:42
 VavilovAccurateQuantile.h:43
 VavilovAccurateQuantile.h:44
 VavilovAccurateQuantile.h:45
 VavilovAccurateQuantile.h:46
 VavilovAccurateQuantile.h:47
 VavilovAccurateQuantile.h:48
 VavilovAccurateQuantile.h:49
 VavilovAccurateQuantile.h:50
 VavilovAccurateQuantile.h:51
 VavilovAccurateQuantile.h:52
 VavilovAccurateQuantile.h:53
 VavilovAccurateQuantile.h:54
 VavilovAccurateQuantile.h:55
 VavilovAccurateQuantile.h:56
 VavilovAccurateQuantile.h:57
 VavilovAccurateQuantile.h:58
 VavilovAccurateQuantile.h:59
 VavilovAccurateQuantile.h:60
 VavilovAccurateQuantile.h:61
 VavilovAccurateQuantile.h:62
 VavilovAccurateQuantile.h:63
 VavilovAccurateQuantile.h:64
 VavilovAccurateQuantile.h:65
 VavilovAccurateQuantile.h:66
 VavilovAccurateQuantile.h:67
 VavilovAccurateQuantile.h:68
 VavilovAccurateQuantile.h:69
 VavilovAccurateQuantile.h:70
 VavilovAccurateQuantile.h:71
 VavilovAccurateQuantile.h:72
 VavilovAccurateQuantile.h:73
 VavilovAccurateQuantile.h:74
 VavilovAccurateQuantile.h:75
 VavilovAccurateQuantile.h:76
 VavilovAccurateQuantile.h:77
 VavilovAccurateQuantile.h:78
 VavilovAccurateQuantile.h:79
 VavilovAccurateQuantile.h:80
 VavilovAccurateQuantile.h:81
 VavilovAccurateQuantile.h:82
 VavilovAccurateQuantile.h:83
 VavilovAccurateQuantile.h:84
 VavilovAccurateQuantile.h:85
 VavilovAccurateQuantile.h:86
 VavilovAccurateQuantile.h:87
 VavilovAccurateQuantile.h:88
 VavilovAccurateQuantile.h:89
 VavilovAccurateQuantile.h:90
 VavilovAccurateQuantile.h:91
 VavilovAccurateQuantile.h:92
 VavilovAccurateQuantile.h:93
 VavilovAccurateQuantile.h:94
 VavilovAccurateQuantile.h:95
 VavilovAccurateQuantile.h:96
 VavilovAccurateQuantile.h:97
 VavilovAccurateQuantile.h:98
 VavilovAccurateQuantile.h:99
 VavilovAccurateQuantile.h:100
 VavilovAccurateQuantile.h:101
 VavilovAccurateQuantile.h:102
 VavilovAccurateQuantile.h:103
 VavilovAccurateQuantile.h:104
 VavilovAccurateQuantile.h:105
 VavilovAccurateQuantile.h:106
 VavilovAccurateQuantile.h:107
 VavilovAccurateQuantile.h:108
 VavilovAccurateQuantile.h:109
 VavilovAccurateQuantile.h:110
 VavilovAccurateQuantile.h:111
 VavilovAccurateQuantile.h:112
 VavilovAccurateQuantile.h:113
 VavilovAccurateQuantile.h:114
 VavilovAccurateQuantile.h:115
 VavilovAccurateQuantile.h:116
 VavilovAccurateQuantile.h:117
 VavilovAccurateQuantile.h:118
 VavilovAccurateQuantile.h:119
 VavilovAccurateQuantile.h:120
 VavilovAccurateQuantile.h:121
 VavilovAccurateQuantile.h:122
 VavilovAccurateQuantile.h:123
 VavilovAccurateQuantile.h:124
 VavilovAccurateQuantile.h:125
 VavilovAccurateQuantile.h:126
 VavilovAccurateQuantile.h:127
 VavilovAccurateQuantile.h:128
 VavilovAccurateQuantile.h:129
 VavilovAccurateQuantile.h:130
 VavilovAccurateQuantile.h:131
 VavilovAccurateQuantile.h:132
 VavilovAccurateQuantile.h:133
 VavilovAccurateQuantile.h:134
 VavilovAccurateQuantile.h:135
 VavilovAccurateQuantile.h:136
 VavilovAccurateQuantile.h:137
 VavilovAccurateQuantile.h:138
 VavilovAccurateQuantile.h:139
 VavilovAccurateQuantile.h:140
 VavilovAccurateQuantile.h:141
 VavilovAccurateQuantile.h:142
 VavilovAccurateQuantile.h:143