// @(#)root/mathcore:$Id$ // Authors: L. Moneta 12/2005 /********************************************************************** * * * Copyright (c) 2005 , LCG ROOT MathLib Team * * * * * **********************************************************************/ // Header file for class LorentzVector // // Created by: moneta at Fri Dec 02 2005 // // Last update: $Id$ // #ifndef ROOT_Math_GenVector_Plane3D #define ROOT_Math_GenVector_Plane3D 1 #include "Math/GenVector/DisplacementVector3D.h" #include "Math/GenVector/PositionVector3D.h" namespace ROOT { namespace Math { //_______________________________________________________________________________ /** Class describing a geometrical plane in 3 dimensions. A Plane3D is a 2 dimensional surface spanned by two linearly independent vectors. The plane is described by the equation \f$ a*x + b*y + c*z + d = 0 \f$ where (a,b,c) are the components of the normal vector to the plane \f$ n = (a,b,c) \f$ and \f$ d = - n \dot x \f$, where x is any point belonging to plane. More information on the mathematics describing a plane in 3D is available on <A HREF=http://mathworld.wolfram.com/Plane.html>MathWord</A>. The Plane3D class contains the 4 scalar values in double which represent the four coefficients, fA, fB, fC, fD. fA, fB, fC are the normal components normalized to 1, i.e. fA**2 + fB**2 + fC**2 = 1 @ingroup GenVector */ class Plane3D { public: // ------ ctors ------ typedef double Scalar; typedef DisplacementVector3D<Cartesian3D<double>, DefaultCoordinateSystemTag > Vector; typedef PositionVector3D<Cartesian3D<double>, DefaultCoordinateSystemTag > Point; /** default constructor create plane z = 0 */ Plane3D ( ) : fA(0), fB(0), fC(1.), fD(0) { } /** generic constructors from the four scalar values describing the plane according to the equation ax + by + cz + d = 0 \param a scalar value \param b scalar value \param c scalar value \param d sxcalar value */ Plane3D(const Scalar & a, const Scalar & b, const Scalar & c, const Scalar & d); /** constructor a Plane3D from a normal vector and a point coplanar to the plane \param n normal expressed as a ROOT::Math::DisplacementVector3D<Cartesian3D<double> > \param p point expressed as a ROOT::Math::PositionVector3D<Cartesian3D<double> > */ Plane3D(const Vector & n, const Point & p ) { BuildFromVecAndPoint( n, p ); } /** Construct from a generic DisplacementVector3D (normal vector) and PositionVector3D (point coplanar to the plane) \param n normal expressed as a generic ROOT::Math::DisplacementVector3D \param p point expressed as a generic ROOT::Math::PositionVector3D */ template<class T1, class T2, class U> Plane3D( const DisplacementVector3D<T1,U> & n, const PositionVector3D<T2,U> & p) { BuildFromVecAndPoint( Vector(n), Point(p) ); } /** constructor from three Cartesian point belonging to the plane \param p1 point1 expressed as a generic ROOT::Math::PositionVector3D \param p2 point2 expressed as a generic ROOT::Math::PositionVector3D \param p3 point3 expressed as a generic ROOT::Math::PositionVector3D */ Plane3D(const Point & p1, const Point & p2, const Point & p3 ) { BuildFrom3Points(p1,p2,p3); } /** constructor from three generic point belonging to the plane \param p1 point1 expressed as ROOT::Math::DisplacementVector3D<Cartesian3D<double> > \param p2 point2 expressed as ROOT::Math::DisplacementVector3D<Cartesian3D<double> > \param p3 point3 expressed as ROOT::Math::DisplacementVector3D<Cartesian3D<double> > */ template <class T1, class T2, class T3, class U> Plane3D(const PositionVector3D<T1,U> & p1, const PositionVector3D<T2,U> & p2, const PositionVector3D<T3,U> & p3 ) { BuildFrom3Points( Point(p1.X(), p1.Y(), p1.Z()), Point(p2.X(), p2.Y(), p2.Z()), Point(p3.X(), p3.Y(), p3.Z()) ); } // compiler-generated copy ctor and dtor are fine. // ------ assignment ------ /** Assignment operator from other Plane3D class */ Plane3D & operator= ( const Plane3D & plane) { fA = plane.fA; fB = plane.fB; fC = plane.fC; fD = plane.fD; return *this; } /** Return the a coefficient of the plane equation \f$ a*x + b*y + c*z + d = 0 \f$. It is also the x-component of the vector perpendicular to the plane. */ Scalar A() { return fA; } /** Return the b coefficient of the plane equation \f$ a*x + b*y + c*z + d = 0 \f$. It is also the y-component of the vector perpendicular to the plane */ Scalar B() { return fB; } /** Return the c coefficient of the plane equation \f$ a*x + b*y + c*z + d = 0 \f$. It is also the z-component of the vector perpendicular to the plane */ Scalar C() { return fC; } /** Return the d coefficient of the plane equation \f$ a*x + b*y + c*z + d = 0 \f$. It is also the distance from the origin (HesseDistance) */ Scalar D() { return fD; } /** Return normal vector to the plane as Cartesian DisplacementVector */ Vector Normal() const { return Vector(fA, fB, fC); } /** Return the Hesse Distance (distance from the origin) of the plane or the d coefficient expressed in normalize form */ Scalar HesseDistance() const { return fD; } /** Return the signed distance to a Point. The distance is signed positive if the Point is in the same side of the normal vector to the plane. \param p Point expressed in Cartesian Coordinates */ Scalar Distance(const Point & p) const; /** Return the distance to a Point described with generic coordinates \param p Point expressed as generic ROOT::Math::PositionVector3D */ template <class T, class U> Scalar Distance(const PositionVector3D<T,U> & p) const { return Distance( Point(p.X(), p.Y(), p.Z() ) ); } /** Return the projection of a Cartesian point to a plane \param p Point expressed as PositionVector3D<Cartesian3D<double> > */ Point ProjectOntoPlane(const Point & p) const; /** Return the projection of a point to a plane \param p Point expressed as generic ROOT::Math::PositionVector3D */ template <class T, class U> PositionVector3D<T,U> ProjectOntoPlane(const PositionVector3D<T,U> & p) const { Point pxyz = ProjectOntoPlane(Point(p.X(), p.Y(), p.Z() ) ); PositionVector3D<T,U> p2; p2.SetXYZ( pxyz.X(), pxyz.Y(), pxyz.Z() ); return p2; } // ------------------- Equality ----------------- /** Exact equality */ bool operator==(const Plane3D & rhs) const { return fA == rhs.fA && fB == rhs.fB && fC == rhs.fC && fD == rhs.fD; } bool operator!= (const Plane3D & rhs) const { return !(operator==(rhs)); } protected: /** Normalize the normal (a,b,c) plane components */ void Normalize(); private: // internal method to construct class from a vector and a point void BuildFromVecAndPoint(const Vector & n, const Point & p); // internal method to construct class from 3 points void BuildFrom3Points(const Point & p1, const Point & p2, const Point & p3); // plane data members the four scalar which satisfies fA*x + fB*y + fC*z + fD = 0 // for every point (x,y,z) belonging to the plane. // fA**2 + fB**2 + fC** =1 plane is stored in normalized form Scalar fA; Scalar fB; Scalar fC; Scalar fD; }; // Plane3D<> /** Stream Output and Input */ // TODO - I/O should be put in the manipulator form std::ostream & operator<< (std::ostream & os, const Plane3D & p); } // end namespace Math } // end namespace ROOT #endif