/*
StandardHistFactoryPlotsWithCategories
Author: Kyle Cranmer
date: Spring. 2011
This is a standard demo that can be used with any ROOT file
prepared in the standard way. You specify:
- name for input ROOT file
- name of workspace inside ROOT file that holds model and data
- name of ModelConfig that specifies details for calculator tools
- name of dataset
With default parameters the macro will attempt to run the
standard hist2workspace example and read the ROOT file
that it produces.
The macro will scan through all the categories in a simPdf find the corresponding
observable. For each cateogry, it will loop through each of the nuisance parameters
and plot
- the data
- the nominal model (blue)
- the +Nsigma (red)
- the -Nsigma (green)
You can specify how many sigma to vary by changing nSigmaToVary.
You can also change the signal rate by changing muVal.
The script produces a lot plots, you can merge them by doing:
gs -q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -sOutputFile=merged.pdf `ls *pdf`
*/
#include "TFile.h"
#include "TROOT.h"
#include "TCanvas.h"
#include "TList.h"
#include "TMath.h"
#include "TSystem.h"
#include "RooWorkspace.h"
#include "RooAbsData.h"
#include "RooRealVar.h"
#include "RooPlot.h"
#include "RooSimultaneous.h"
#include "RooCategory.h"
#include "RooStats/ModelConfig.h"
#include "RooStats/ProfileInspector.h"
using namespace RooFit;
using namespace RooStats;
using namespace std;
void StandardHistFactoryPlotsWithCategories(const char* infile = "",
const char* workspaceName = "combined",
const char* modelConfigName = "ModelConfig",
const char* dataName = "obsData"){
double nSigmaToVary=5.;
double muVal=0;
bool doFit=false;
/////////////////////////////////////////////////////////////
// First part is just to access a user-defined file
// or create the standard example file if it doesn't exist
////////////////////////////////////////////////////////////
const char* filename = "";
if (!strcmp(infile,"")) {
filename = "results/example_combined_GaussExample_model.root";
bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
// if file does not exists generate with histfactory
if (!fileExist) {
#ifdef _WIN32
cout << "HistFactory file cannot be generated on Windows - exit" << endl;
return;
#endif
// Normally this would be run on the command line
cout <<"will run standard hist2workspace example"<<endl;
gROOT->ProcessLine(".! prepareHistFactory .");
gROOT->ProcessLine(".! hist2workspace config/example.xml");
cout <<"\n\n---------------------"<<endl;
cout <<"Done creating example input"<<endl;
cout <<"---------------------\n\n"<<endl;
}
}
else
filename = infile;
// Try to open the file
TFile *file = TFile::Open(filename);
// if input file was specified byt not found, quit
if(!file ){
cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
return;
}
/////////////////////////////////////////////////////////////
// Tutorial starts here
////////////////////////////////////////////////////////////
// get the workspace out of the file
RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
if(!w){
cout <<"workspace not found" << endl;
return;
}
// get the modelConfig out of the file
ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);
// get the modelConfig out of the file
RooAbsData* data = w->data(dataName);
// make sure ingredients are found
if(!data || !mc){
w->Print();
cout << "data or ModelConfig was not found" <<endl;
return;
}
//////////////////////////////////////////////
// now use the profile inspector
RooRealVar* obs = (RooRealVar*)mc->GetObservables()->first();
TList* list = new TList();
RooRealVar * firstPOI = dynamic_cast<RooRealVar*>(mc->GetParametersOfInterest()->first());
firstPOI->setVal(muVal);
// firstPOI->setConstant();
if(doFit){
mc->GetPdf()->fitTo(*data);
}
////////////////////////////////////////
////////////////////////////////////////
////////////////////////////////////////
mc->GetNuisanceParameters()->Print("v");
int nPlotsMax = 1000;
cout <<" check expectedData by category"<<endl;
RooDataSet* simData=NULL;
RooSimultaneous* simPdf = NULL;
if(strcmp(mc->GetPdf()->ClassName(),"RooSimultaneous")==0){
cout <<"Is a simultaneous PDF"<<endl;
simPdf = (RooSimultaneous *)(mc->GetPdf());
} else {
cout <<"Is not a simultaneous PDF"<<endl;
}
if(doFit) {
RooCategory* channelCat = (RooCategory*) (&simPdf->indexCat());
TIterator* iter = channelCat->typeIterator() ;
RooCatType* tt = NULL;
tt=(RooCatType*) iter->Next();
RooAbsPdf* pdftmp = ((RooSimultaneous*)mc->GetPdf())->getPdf(tt->GetName()) ;
RooArgSet* obstmp = pdftmp->getObservables(*mc->GetObservables()) ;
obs = ((RooRealVar*)obstmp->first());
RooPlot* frame = obs->frame();
cout <<Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())<<endl;
cout << tt->GetName() << " " << channelCat->getLabel() <<endl;
data->plotOn(frame,MarkerSize(1),Cut(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())),DataError(RooAbsData::None));
Double_t normCount = data->sumEntries(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())) ;
pdftmp->plotOn(frame,LineWidth(2.),Normalization(normCount,RooAbsReal::NumEvent)) ;
frame->Draw();
cout <<"expected events = " << mc->GetPdf()->expectedEvents(*data->get()) <<endl;
return;
}
int nPlots=0;
if(!simPdf){
TIterator* it = mc->GetNuisanceParameters()->createIterator();
RooRealVar* var = NULL;
while( (var = (RooRealVar*) it->Next()) != NULL){
RooPlot* frame = obs->frame();
frame->SetYTitle(var->GetName());
data->plotOn(frame,MarkerSize(1));
var->setVal(0);
mc->GetPdf()->plotOn(frame,LineWidth(1.));
var->setVal(1);
mc->GetPdf()->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(1));
var->setVal(-1);
mc->GetPdf()->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(1));
list->Add(frame);
var->setVal(0);
}
} else {
RooCategory* channelCat = (RooCategory*) (&simPdf->indexCat());
// TIterator* iter = simPdf->indexCat().typeIterator() ;
TIterator* iter = channelCat->typeIterator() ;
RooCatType* tt = NULL;
while(nPlots<nPlotsMax && (tt=(RooCatType*) iter->Next())) {
cout << "on type " << tt->GetName() << " " << endl;
// Get pdf associated with state from simpdf
RooAbsPdf* pdftmp = simPdf->getPdf(tt->GetName()) ;
// Generate observables defined by the pdf associated with this state
RooArgSet* obstmp = pdftmp->getObservables(*mc->GetObservables()) ;
// obstmp->Print();
obs = ((RooRealVar*)obstmp->first());
TIterator* it = mc->GetNuisanceParameters()->createIterator();
RooRealVar* var = NULL;
while(nPlots<nPlotsMax && (var = (RooRealVar*) it->Next())){
TCanvas* c2 = new TCanvas("c2");
RooPlot* frame = obs->frame();
frame->SetName(Form("frame%d",nPlots));
frame->SetYTitle(var->GetName());
cout <<Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())<<endl;
cout << tt->GetName() << " " << channelCat->getLabel() <<endl;
data->plotOn(frame,MarkerSize(1),Cut(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())),DataError(RooAbsData::None));
Double_t normCount = data->sumEntries(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())) ;
if(strcmp(var->GetName(),"Lumi")==0){
cout <<"working on lumi"<<endl;
var->setVal(w->var("nominalLumi")->getVal());
var->Print();
} else{
var->setVal(0);
}
// w->allVars().Print("v");
// mc->GetNuisanceParameters()->Print("v");
// pdftmp->plotOn(frame,LineWidth(2.));
// mc->GetPdf()->plotOn(frame,LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
//pdftmp->plotOn(frame,LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
normCount = pdftmp->expectedEvents(*obs);
pdftmp->plotOn(frame,LineWidth(2.),Normalization(normCount,RooAbsReal::NumEvent)) ;
if(strcmp(var->GetName(),"Lumi")==0){
cout <<"working on lumi"<<endl;
var->setVal(w->var("nominalLumi")->getVal()+0.05);
var->Print();
} else{
var->setVal(nSigmaToVary);
}
// pdftmp->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(2));
// mc->GetPdf()->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
//pdftmp->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
normCount = pdftmp->expectedEvents(*obs);
pdftmp->plotOn(frame,LineWidth(2.),LineColor(kRed),LineStyle(kDashed),Normalization(normCount,RooAbsReal::NumEvent)) ;
if(strcmp(var->GetName(),"Lumi")==0){
cout <<"working on lumi"<<endl;
var->setVal(w->var("nominalLumi")->getVal()-0.05);
var->Print();
} else{
var->setVal(-nSigmaToVary);
}
// pdftmp->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(2));
// mc->GetPdf()->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(2),Slice(*channelCat,tt->GetName()),ProjWData(*data));
//pdftmp->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(2),Slice(*channelCat,tt->GetName()),ProjWData(*data));
normCount = pdftmp->expectedEvents(*obs);
pdftmp->plotOn(frame,LineWidth(2.),LineColor(kGreen),LineStyle(kDashed),Normalization(normCount,RooAbsReal::NumEvent)) ;
// set them back to normal
if(strcmp(var->GetName(),"Lumi")==0){
cout <<"working on lumi"<<endl;
var->setVal(w->var("nominalLumi")->getVal());
var->Print();
} else{
var->setVal(0);
}
list->Add(frame);
// quit making plots
++nPlots;
frame->Draw();
c2->SaveAs(Form("%s_%s_%s.pdf",tt->GetName(),obs->GetName(),var->GetName()));
delete c2;
}
}
}
////////////////////////////////////////
////////////////////////////////////////
////////////////////////////////////////
// now make plots
TCanvas* c1 = new TCanvas("c1","ProfileInspectorDemo",800,200);
if(list->GetSize()>4){
double n = list->GetSize();
int nx = (int)sqrt(n) ;
int ny = TMath::CeilNint(n/nx);
nx = TMath::CeilNint( sqrt(n) );
c1->Divide(ny,nx);
} else
c1->Divide(list->GetSize());
for(int i=0; i<list->GetSize(); ++i){
c1->cd(i+1);
list->At(i)->Draw();
}
}