From $ROOTSYS/tutorials/roostats/IntervalExamples.C

// Example showing confidence intervals with four techniques.
/*
IntervalExamples

Author Kyle Cranmer 
date   Sep. 2010

An example that shows confidence intervals with four techniques.
The model is a Normal Gaussian G(x|mu,sigma) with 100 samples of x.
The answer is known analytically, so this is a good example to validate
the RooStats tools.

expected interval is [-0.162917, 0.229075]
plc  interval is     [-0.162917, 0.229075]
fc   interval is     [-0.17    , 0.23]        // stepsize is 0.01
bc   interval is     [-0.162918, 0.229076]
mcmc interval is     [-0.166999, 0.230224]


*/

#include "RooStats/ConfInterval.h"
#include "RooStats/PointSetInterval.h"
#include "RooStats/ConfidenceBelt.h"
#include "RooStats/FeldmanCousins.h"
#include "RooStats/ProfileLikelihoodCalculator.h"
#include "RooStats/MCMCCalculator.h"
#include "RooStats/BayesianCalculator.h"
#include "RooStats/MCMCIntervalPlot.h"
#include "RooStats/LikelihoodIntervalPlot.h"

#include "RooStats/ProofConfig.h"
#include "RooStats/ToyMCSampler.h"

#include "RooRandom.h"
#include "RooDataSet.h"
#include "RooRealVar.h"
#include "RooConstVar.h"
#include "RooAddition.h"
#include "RooDataHist.h"
#include "RooPoisson.h"
#include "RooPlot.h"

#include "TCanvas.h"
#include "TTree.h"
#include "TStyle.h"
#include "TMath.h"
#include"Math/DistFunc.h"
#include "TH1F.h"
#include "TMarker.h"
#include "TStopwatch.h"

#include <iostream>

// use this order for safety on library loading
using namespace RooFit ;
using namespace RooStats ;


void IntervalExamples()
{
  
  // Time this macro
  TStopwatch t;
  t.Start();


  // set RooFit random seed for reproducible results
  RooRandom::randomGenerator()->SetSeed(3001);

  // make a simple model via the workspace factory
  RooWorkspace* wspace = new RooWorkspace();
  wspace->factory("Gaussian::normal(x[-10,10],mu[-1,1],sigma[1])");
  wspace->defineSet("poi","mu");
  wspace->defineSet("obs","x");

  // specify components of model for statistical tools
  ModelConfig* modelConfig = new ModelConfig("Example G(x|mu,1)");
  modelConfig->SetWorkspace(*wspace);
  modelConfig->SetPdf( *wspace->pdf("normal") );
  modelConfig->SetParametersOfInterest( *wspace->set("poi") );
  modelConfig->SetObservables( *wspace->set("obs") );

  // create a toy dataset
  RooDataSet* data = wspace->pdf("normal")->generate(*wspace->set("obs"),100);
  data->Print();

  // for convenience later on 
  RooRealVar* x = wspace->var("x");
  RooRealVar* mu = wspace->var("mu");

  // set confidence level
  double confidenceLevel = 0.95;

  // example use profile likelihood calculator
  ProfileLikelihoodCalculator plc(*data, *modelConfig);
  plc.SetConfidenceLevel( confidenceLevel);
  LikelihoodInterval* plInt = plc.GetInterval();

  // example use of Feldman-Cousins
  FeldmanCousins fc(*data, *modelConfig); 
  fc.SetConfidenceLevel( confidenceLevel);
  fc.SetNBins(100); // number of points to test per parameter
  fc.UseAdaptiveSampling(true); // make it go faster

  // Here, we consider only ensembles with 100 events
  // The PDF could be extended and this could be removed
  fc.FluctuateNumDataEntries(false); 

  // Proof
  //  ProofConfig pc(*wspace, 4, "workers=4", kFALSE);    // proof-lite
  //ProofConfig pc(w, 8, "localhost");    // proof cluster at "localhost"
  //  ToyMCSampler* toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler();
  //  toymcsampler->SetProofConfig(&pc);     // enable proof

  PointSetInterval* interval = (PointSetInterval*) fc.GetInterval();


  // example use of BayesianCalculator
  // now we also need to specify a prior in the ModelConfig
  wspace->factory("Uniform::prior(mu)");
  modelConfig->SetPriorPdf(*wspace->pdf("prior"));

  // example usage of BayesianCalculator
  BayesianCalculator bc(*data, *modelConfig);
  bc.SetConfidenceLevel( confidenceLevel);
  SimpleInterval* bcInt = bc.GetInterval();

  // example use of MCMCInterval
  MCMCCalculator mc(*data, *modelConfig);
  mc.SetConfidenceLevel( confidenceLevel);
  // special options
  mc.SetNumBins(200);	  // bins used internally for representing posterior
  mc.SetNumBurnInSteps(500); // first N steps to be ignored as burn-in
  mc.SetNumIters(100000);    // how long to run chain
  mc.SetLeftSideTailFraction(0.5); // for central interval
  MCMCInterval* mcInt = mc.GetInterval();
  
  // for this example we know the expected intervals
  double expectedLL = data->mean(*x) 
    + ROOT::Math::normal_quantile(  (1-confidenceLevel)/2,1)
    / sqrt(data->numEntries());
  double expectedUL = data->mean(*x) 
    + ROOT::Math::normal_quantile_c((1-confidenceLevel)/2,1)
    / sqrt(data->numEntries()) ;

  // Use the intervals
  std::cout << "expected interval is [" << 
    expectedLL << ", " << 
    expectedUL << "]" << endl; 

  cout << "plc interval is [" << 
    plInt->LowerLimit(*mu) << ", " << 
    plInt->UpperLimit(*mu) << "]" << endl;

  std::cout << "fc interval is ["<<  
    interval->LowerLimit(*mu) << " , "  <<
    interval->UpperLimit(*mu) << "]" << endl;

  cout << "bc interval is [" << 
    bcInt->LowerLimit() << ", " << 
    bcInt->UpperLimit() << "]" << endl;

  cout << "mc interval is [" << 
    mcInt->LowerLimit(*mu) << ", " << 
    mcInt->UpperLimit(*mu) << "]" << endl;
  
  mu->setVal(0);
  cout << "is mu=0 in the interval? " << 
    plInt->IsInInterval(RooArgSet(*mu)) << endl;

 
  // make a reasonable style 
  gStyle->SetCanvasColor(0);
  gStyle->SetCanvasBorderMode(0);
  gStyle->SetPadBorderMode(0);
  gStyle->SetPadColor(0);
  gStyle->SetCanvasColor(0);
  gStyle->SetTitleFillColor(0);
  gStyle->SetFillColor(0);
  gStyle->SetFrameFillColor(0);
  gStyle->SetStatColor(0);
 

  // some plots
  TCanvas* canvas = new TCanvas("canvas");
  canvas->Divide(2,2);

  // plot the data
  canvas->cd(1);
  RooPlot* frame = x->frame();
  data->plotOn(frame);
  data->statOn(frame);
  frame->Draw();

  // plot the profile likeihood
  canvas->cd(2);
  LikelihoodIntervalPlot plot(plInt);
  plot.Draw();

  // plot the MCMC interval
  canvas->cd(3);
  MCMCIntervalPlot* mcPlot = new MCMCIntervalPlot(*mcInt);
  mcPlot->SetLineColor(kGreen);
  mcPlot->SetLineWidth(2);
  mcPlot->Draw();

  canvas->cd(4);
  RooPlot * bcPlot = bc.GetPosteriorPlot();
  bcPlot->Draw();

  canvas->Update();

  t.Stop();
  t.Print();

}
 IntervalExamples.C:1
 IntervalExamples.C:2
 IntervalExamples.C:3
 IntervalExamples.C:4
 IntervalExamples.C:5
 IntervalExamples.C:6
 IntervalExamples.C:7
 IntervalExamples.C:8
 IntervalExamples.C:9
 IntervalExamples.C:10
 IntervalExamples.C:11
 IntervalExamples.C:12
 IntervalExamples.C:13
 IntervalExamples.C:14
 IntervalExamples.C:15
 IntervalExamples.C:16
 IntervalExamples.C:17
 IntervalExamples.C:18
 IntervalExamples.C:19
 IntervalExamples.C:20
 IntervalExamples.C:21
 IntervalExamples.C:22
 IntervalExamples.C:23
 IntervalExamples.C:24
 IntervalExamples.C:25
 IntervalExamples.C:26
 IntervalExamples.C:27
 IntervalExamples.C:28
 IntervalExamples.C:29
 IntervalExamples.C:30
 IntervalExamples.C:31
 IntervalExamples.C:32
 IntervalExamples.C:33
 IntervalExamples.C:34
 IntervalExamples.C:35
 IntervalExamples.C:36
 IntervalExamples.C:37
 IntervalExamples.C:38
 IntervalExamples.C:39
 IntervalExamples.C:40
 IntervalExamples.C:41
 IntervalExamples.C:42
 IntervalExamples.C:43
 IntervalExamples.C:44
 IntervalExamples.C:45
 IntervalExamples.C:46
 IntervalExamples.C:47
 IntervalExamples.C:48
 IntervalExamples.C:49
 IntervalExamples.C:50
 IntervalExamples.C:51
 IntervalExamples.C:52
 IntervalExamples.C:53
 IntervalExamples.C:54
 IntervalExamples.C:55
 IntervalExamples.C:56
 IntervalExamples.C:57
 IntervalExamples.C:58
 IntervalExamples.C:59
 IntervalExamples.C:60
 IntervalExamples.C:61
 IntervalExamples.C:62
 IntervalExamples.C:63
 IntervalExamples.C:64
 IntervalExamples.C:65
 IntervalExamples.C:66
 IntervalExamples.C:67
 IntervalExamples.C:68
 IntervalExamples.C:69
 IntervalExamples.C:70
 IntervalExamples.C:71
 IntervalExamples.C:72
 IntervalExamples.C:73
 IntervalExamples.C:74
 IntervalExamples.C:75
 IntervalExamples.C:76
 IntervalExamples.C:77
 IntervalExamples.C:78
 IntervalExamples.C:79
 IntervalExamples.C:80
 IntervalExamples.C:81
 IntervalExamples.C:82
 IntervalExamples.C:83
 IntervalExamples.C:84
 IntervalExamples.C:85
 IntervalExamples.C:86
 IntervalExamples.C:87
 IntervalExamples.C:88
 IntervalExamples.C:89
 IntervalExamples.C:90
 IntervalExamples.C:91
 IntervalExamples.C:92
 IntervalExamples.C:93
 IntervalExamples.C:94
 IntervalExamples.C:95
 IntervalExamples.C:96
 IntervalExamples.C:97
 IntervalExamples.C:98
 IntervalExamples.C:99
 IntervalExamples.C:100
 IntervalExamples.C:101
 IntervalExamples.C:102
 IntervalExamples.C:103
 IntervalExamples.C:104
 IntervalExamples.C:105
 IntervalExamples.C:106
 IntervalExamples.C:107
 IntervalExamples.C:108
 IntervalExamples.C:109
 IntervalExamples.C:110
 IntervalExamples.C:111
 IntervalExamples.C:112
 IntervalExamples.C:113
 IntervalExamples.C:114
 IntervalExamples.C:115
 IntervalExamples.C:116
 IntervalExamples.C:117
 IntervalExamples.C:118
 IntervalExamples.C:119
 IntervalExamples.C:120
 IntervalExamples.C:121
 IntervalExamples.C:122
 IntervalExamples.C:123
 IntervalExamples.C:124
 IntervalExamples.C:125
 IntervalExamples.C:126
 IntervalExamples.C:127
 IntervalExamples.C:128
 IntervalExamples.C:129
 IntervalExamples.C:130
 IntervalExamples.C:131
 IntervalExamples.C:132
 IntervalExamples.C:133
 IntervalExamples.C:134
 IntervalExamples.C:135
 IntervalExamples.C:136
 IntervalExamples.C:137
 IntervalExamples.C:138
 IntervalExamples.C:139
 IntervalExamples.C:140
 IntervalExamples.C:141
 IntervalExamples.C:142
 IntervalExamples.C:143
 IntervalExamples.C:144
 IntervalExamples.C:145
 IntervalExamples.C:146
 IntervalExamples.C:147
 IntervalExamples.C:148
 IntervalExamples.C:149
 IntervalExamples.C:150
 IntervalExamples.C:151
 IntervalExamples.C:152
 IntervalExamples.C:153
 IntervalExamples.C:154
 IntervalExamples.C:155
 IntervalExamples.C:156
 IntervalExamples.C:157
 IntervalExamples.C:158
 IntervalExamples.C:159
 IntervalExamples.C:160
 IntervalExamples.C:161
 IntervalExamples.C:162
 IntervalExamples.C:163
 IntervalExamples.C:164
 IntervalExamples.C:165
 IntervalExamples.C:166
 IntervalExamples.C:167
 IntervalExamples.C:168
 IntervalExamples.C:169
 IntervalExamples.C:170
 IntervalExamples.C:171
 IntervalExamples.C:172
 IntervalExamples.C:173
 IntervalExamples.C:174
 IntervalExamples.C:175
 IntervalExamples.C:176
 IntervalExamples.C:177
 IntervalExamples.C:178
 IntervalExamples.C:179
 IntervalExamples.C:180
 IntervalExamples.C:181
 IntervalExamples.C:182
 IntervalExamples.C:183
 IntervalExamples.C:184
 IntervalExamples.C:185
 IntervalExamples.C:186
 IntervalExamples.C:187
 IntervalExamples.C:188
 IntervalExamples.C:189
 IntervalExamples.C:190
 IntervalExamples.C:191
 IntervalExamples.C:192
 IntervalExamples.C:193
 IntervalExamples.C:194
 IntervalExamples.C:195
 IntervalExamples.C:196
 IntervalExamples.C:197
 IntervalExamples.C:198
 IntervalExamples.C:199
 IntervalExamples.C:200
 IntervalExamples.C:201
 IntervalExamples.C:202
 IntervalExamples.C:203
 IntervalExamples.C:204
 IntervalExamples.C:205
 IntervalExamples.C:206
 IntervalExamples.C:207
 IntervalExamples.C:208
 IntervalExamples.C:209
 IntervalExamples.C:210
 IntervalExamples.C:211
 IntervalExamples.C:212
 IntervalExamples.C:213
 IntervalExamples.C:214
 IntervalExamples.C:215
 IntervalExamples.C:216
 IntervalExamples.C:217
 IntervalExamples.C:218