//////////////////////////////////////////////////////////////////////////
//
// 'LIKELIHOOD AND MINIMIZATION' RooFit tutorial macro #607
//
// Demonstration of options of the RooFitResult class
//
//
//
// 07/2008 - Wouter Verkerke
//
/////////////////////////////////////////////////////////////////////////
#ifndef __CINT__
#include "RooGlobalFunc.h"
#endif
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooGaussian.h"
#include "RooConstVar.h"
#include "RooAddPdf.h"
#include "RooChebychev.h"
#include "RooFitResult.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "RooPlot.h"
#include "TFile.h"
#include "TStyle.h"
#include "TH2.h"
#include "TMatrixDSym.h"
using namespace RooFit ;
void rf607_fitresult()
{
// C r e a t e p d f , d a t a
// --------------------------------
// Declare observable x
RooRealVar x("x","x",0,10) ;
// Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters
RooRealVar mean("mean","mean of gaussians",5,-10,10) ;
RooRealVar sigma1("sigma1","width of gaussians",0.5,0.1,10) ;
RooRealVar sigma2("sigma2","width of gaussians",1,0.1,10) ;
RooGaussian sig1("sig1","Signal component 1",x,mean,sigma1) ;
RooGaussian sig2("sig2","Signal component 2",x,mean,sigma2) ;
// Build Chebychev polynomial p.d.f.
RooRealVar a0("a0","a0",0.5,0.,1.) ;
RooRealVar a1("a1","a1",-0.2) ;
RooChebychev bkg("bkg","Background",x,RooArgSet(a0,a1)) ;
// Sum the signal components into a composite signal p.d.f.
RooRealVar sig1frac("sig1frac","fraction of component 1 in signal",0.8,0.,1.) ;
RooAddPdf sig("sig","Signal",RooArgList(sig1,sig2),sig1frac) ;
// Sum the composite signal and background
RooRealVar bkgfrac("bkgfrac","fraction of background",0.5,0.,1.) ;
RooAddPdf model("model","g1+g2+a",RooArgList(bkg,sig),bkgfrac) ;
// Generate 1000 events
RooDataSet* data = model.generate(x,1000) ;
// F i t p d f t o d a t a , s a v e f i t r e s u l t
// -------------------------------------------------------------
// Perform fit and save result
RooFitResult* r = model.fitTo(*data,Save()) ;
// P r i n t f i t r e s u l t s
// ---------------------------------
// Summary printing: Basic info plus final values of floating fit parameters
r->Print() ;
// Verbose printing: Basic info, values of constant parameters, initial and
// final values of floating parameters, global correlations
r->Print("v") ;
// V i s u a l i z e c o r r e l a t i o n m a t r i x
// -------------------------------------------------------
// Construct 2D color plot of correlation matrix
gStyle->SetOptStat(0) ;
gStyle->SetPalette(1) ;
TH2* hcorr = r->correlationHist() ;
// Visualize ellipse corresponding to single correlation matrix element
RooPlot* frame = new RooPlot(sigma1,sig1frac,0.45,0.60,0.65,0.90) ;
frame->SetTitle("Covariance between sigma1 and sig1frac") ;
r->plotOn(frame,sigma1,sig1frac,"ME12ABHV") ;
// A c c e s s f i t r e s u l t i n f o r m a t i o n
// ---------------------------------------------------------
// Access basic information
cout << "EDM = " << r->edm() << endl ;
cout << "-log(L) at minimum = " << r->minNll() << endl ;
// Access list of final fit parameter values
cout << "final value of floating parameters" << endl ;
r->floatParsFinal().Print("s") ;
// Access correlation matrix elements
cout << "correlation between sig1frac and a0 is " << r->correlation(sig1frac,a0) << endl ;
cout << "correlation between bkgfrac and mean is " << r->correlation("bkgfrac","mean") << endl ;
// Extract covariance and correlation matrix as TMatrixDSym
const TMatrixDSym& cor = r->correlationMatrix() ;
const TMatrixDSym& cov = r->covarianceMatrix() ;
// Print correlation, covariance matrix
cout << "correlation matrix" << endl ;
cor.Print() ;
cout << "covariance matrix" << endl ;
cov.Print() ;
// P e r s i s t f i t r e s u l t i n r o o t f i l e
// -------------------------------------------------------------
// Open new ROOT file save save result
TFile f("rf607_fitresult.root","RECREATE") ;
r->Write("rf607") ;
f.Close() ;
// In a clean ROOT session retrieve the persisted fit result as follows:
// RooFitResult* r = gDirectory->Get("rf607") ;
TCanvas* c = new TCanvas("rf607_fitresult","rf607_fitresult",800,400) ;
c->Divide(2) ;
c->cd(1) ; gPad->SetLeftMargin(0.15) ; hcorr->GetYaxis()->SetTitleOffset(1.4) ; hcorr->Draw("colz") ;
c->cd(2) ; gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.6) ; frame->Draw() ;
}