/////////////////////////////////////////////////////////////////////////
//
// 'ORGANIZATION AND SIMULTANEOUS FITS' RooFit tutorial macro #510
//
// Working with named parameter sets and parameter snapshots in
// workspaces
//
// 04/2009 - Wouter Verkerke
//
/////////////////////////////////////////////////////////////////////////
#ifndef __CINT__
#include "RooGlobalFunc.h"
#endif
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooGaussian.h"
#include "RooConstVar.h"
#include "RooChebychev.h"
#include "RooAddPdf.h"
#include "RooWorkspace.h"
#include "RooPlot.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "TFile.h"
#include "TH1.h"
using namespace RooFit ;
void fillWorkspace(RooWorkspace& w) ;
void rf510_wsnamedsets()
{
// C r e a t e m o d e l a n d d a t a s e t
// -----------------------------------------------
RooWorkspace* w = new RooWorkspace("w") ;
fillWorkspace(*w) ;
// Exploit convention encoded in named set "parameters" and "observables"
// to use workspace contents w/o need for introspected
RooAbsPdf* model = w->pdf("model") ;
// Generate data from p.d.f. in given observables
RooDataSet* data = model->generate(*w->set("observables"),1000) ;
// Fit model to data
model->fitTo(*data) ;
// Plot fitted model and data on frame of first (only) observable
RooPlot* frame = ((RooRealVar*)w->set("observables")->first())->frame() ;
data->plotOn(frame) ;
model->plotOn(frame) ;
// Overlay plot with model with reference parameters as stored in snapshots
w->loadSnapshot("reference_fit") ;
model->plotOn(frame,LineColor(kRed)) ;
w->loadSnapshot("reference_fit_bkgonly") ;
model->plotOn(frame,LineColor(kRed),LineStyle(kDashed)) ;
// Draw the frame on the canvas
new TCanvas("rf510_wsnamedsets","rf503_wsnamedsets",600,600) ;
gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.4) ; frame->Draw() ;
// Print workspace contents
w->Print() ;
// Workspace will remain in memory after macro finishes
gDirectory->Add(w) ;
}
void fillWorkspace(RooWorkspace& w)
{
// C r e a t e m o d e l
// -----------------------
// Declare observable x
RooRealVar x("x","x",0,10) ;
// Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters
RooRealVar mean("mean","mean of gaussians",5,0,10) ;
RooRealVar sigma1("sigma1","width of gaussians",0.5) ;
RooRealVar sigma2("sigma2","width of gaussians",1) ;
RooGaussian sig1("sig1","Signal component 1",x,mean,sigma1) ;
RooGaussian sig2("sig2","Signal component 2",x,mean,sigma2) ;
// Build Chebychev polynomial p.d.f.
RooRealVar a0("a0","a0",0.5,0.,1.) ;
RooRealVar a1("a1","a1",-0.2,0.,1.) ;
RooChebychev bkg("bkg","Background",x,RooArgSet(a0,a1)) ;
// Sum the signal components into a composite signal p.d.f.
RooRealVar sig1frac("sig1frac","fraction of component 1 in signal",0.8,0.,1.) ;
RooAddPdf sig("sig","Signal",RooArgList(sig1,sig2),sig1frac) ;
// Sum the composite signal and background
RooRealVar bkgfrac("bkgfrac","fraction of background",0.5,0.,1.) ;
RooAddPdf model("model","g1+g2+a",RooArgList(bkg,sig),bkgfrac) ;
// Import model into p.d.f.
w.import(model) ;
// E n c o d e d e f i n i t i o n o f p a r a m e t e r s i n w o r k s p a c e
// ---------------------------------------------------------------------------------------
// Define named sets "parameters" and "observables", which list which variables should be considered
// parameters and observables by the users convention
//
// Variables appearing in sets _must_ live in the workspace already, or the autoImport flag
// of defineSet must be set to import them on the fly. Named sets contain only references
// to the original variables, therefore the value of observables in named sets already
// reflect their 'current' value
RooArgSet* params = (RooArgSet*) model.getParameters(x) ;
w.defineSet("parameters",*params) ;
w.defineSet("observables",x) ;
// E n c o d e r e f e r e n c e v a l u e f o r p a r a m e t e r s i n w o r k s p a c e
// ---------------------------------------------------------------------------------------------------
// Define a parameter 'snapshot' in the p.d.f.
// Unlike a named set, a parameter snapshot stores an independent set of values for
// a given set of variables in the workspace. The values can be stored and reloaded
// into the workspace variable objects using the loadSnapshot() and saveSnapshot()
// methods. A snapshot saves the value of each variable, any errors that are stored
// with it as well as the 'Constant' flag that is used in fits to determine if a
// parameter is kept fixed or not.
// Do a dummy fit to a (supposedly) reference dataset here and store the results
// of that fit into a snapshot
RooDataSet* refData = model.generate(x,10000) ;
model.fitTo(*refData,PrintLevel(-1)) ;
// The kTRUE flag imports the values of the objects in (*params) into the workspace
// If not set, the present values of the workspace parameters objects are stored
w.saveSnapshot("reference_fit",*params,kTRUE) ;
// Make another fit with the signal componentforced to zero
// and save those parameters too
bkgfrac.setVal(1) ;
bkgfrac.setConstant(kTRUE) ;
bkgfrac.removeError() ;
model.fitTo(*refData,PrintLevel(-1)) ;
w.saveSnapshot("reference_fit_bkgonly",*params,kTRUE) ;
}