void mlpHiggs(Int_t ntrain=100) { // Example of a Multi Layer Perceptron // For a LEP search for invisible Higgs boson, a neural network // was used to separate the signal from the background passing // some selection cuts. Here is a simplified version of this network, // taking into account only WW events. //Author: Christophe Delaere if (!gROOT->GetClass("TMultiLayerPerceptron")) { gSystem->Load("libMLP"); } // Prepare inputs // The 2 trees are merged into one, and a "type" branch, // equal to 1 for the signal and 0 for the background is added. const char *fname = "mlpHiggs.root"; TFile *input = 0; if (!gSystem->AccessPathName(fname)) { input = TFile::Open(fname); } else { printf("accessing %s file from http://root.cern.ch/files\n",fname); input = TFile::Open(Form("http://root.cern.ch/files/%s",fname)); } if (!input) return; TTree *signal = (TTree *) input->Get("sig_filtered"); TTree *background = (TTree *) input->Get("bg_filtered"); TTree *simu = new TTree("MonteCarlo", "Filtered Monte Carlo Events"); Float_t ptsumf, qelep, nch, msumf, minvis, acopl, acolin; Int_t type; signal->SetBranchAddress("ptsumf", &ptsumf); signal->SetBranchAddress("qelep", &qelep); signal->SetBranchAddress("nch", &nch); signal->SetBranchAddress("msumf", &msumf); signal->SetBranchAddress("minvis", &minvis); signal->SetBranchAddress("acopl", &acopl); signal->SetBranchAddress("acolin", &acolin); background->SetBranchAddress("ptsumf", &ptsumf); background->SetBranchAddress("qelep", &qelep); background->SetBranchAddress("nch", &nch); background->SetBranchAddress("msumf", &msumf); background->SetBranchAddress("minvis", &minvis); background->SetBranchAddress("acopl", &acopl); background->SetBranchAddress("acolin", &acolin); simu->Branch("ptsumf", &ptsumf, "ptsumf/F"); simu->Branch("qelep", &qelep, "qelep/F"); simu->Branch("nch", &nch, "nch/F"); simu->Branch("msumf", &msumf, "msumf/F"); simu->Branch("minvis", &minvis, "minvis/F"); simu->Branch("acopl", &acopl, "acopl/F"); simu->Branch("acolin", &acolin, "acolin/F"); simu->Branch("type", &type, "type/I"); type = 1; Int_t i; for (i = 0; i < signal->GetEntries(); i++) { signal->GetEntry(i); simu->Fill(); } type = 0; for (i = 0; i < background->GetEntries(); i++) { background->GetEntry(i); simu->Fill(); } // Build and train the NN ptsumf is used as a weight since we are primarly // interested by high pt events. // The datasets used here are the same as the default ones. TMultiLayerPerceptron *mlp = new TMultiLayerPerceptron("@msumf,@ptsumf,@acolin:5:3:type", "ptsumf",simu,"Entry$%2","(Entry$+1)%2"); mlp->Train(ntrain, "text,graph,update=10"); mlp->Export("test","python"); // Use TMLPAnalyzer to see what it looks for TCanvas* mlpa_canvas = new TCanvas("mlpa_canvas","Network analysis"); mlpa_canvas->Divide(2,2); TMLPAnalyzer ana(mlp); // Initialisation ana.GatherInformations(); // output to the console ana.CheckNetwork(); mlpa_canvas->cd(1); // shows how each variable influences the network ana.DrawDInputs(); mlpa_canvas->cd(2); // shows the network structure mlp->Draw(); mlpa_canvas->cd(3); // draws the resulting network ana.DrawNetwork(0,"type==1","type==0"); mlpa_canvas->cd(4); // Use the NN to plot the results for each sample // This will give approx. the same result as DrawNetwork. // All entries are used, while DrawNetwork focuses on // the test sample. Also the xaxis range is manually set. TH1F *bg = new TH1F("bgh", "NN output", 50, -.5, 1.5); TH1F *sig = new TH1F("sigh", "NN output", 50, -.5, 1.5); bg->SetDirectory(0); sig->SetDirectory(0); Double_t params[4]; for (i = 0; i < background->GetEntries(); i++) { background->GetEntry(i); params[0] = msumf; params[1] = ptsumf; params[2] = acolin; params[3] = acopl; bg->Fill(mlp->Evaluate(0, params)); } for (i = 0; i < signal->GetEntries(); i++) { signal->GetEntry(i); params[0] = msumf; params[1] = ptsumf; params[2] = acolin; params[3] = acopl; sig->Fill(mlp->Evaluate(0,params)); } bg->SetLineColor(kBlue); bg->SetFillStyle(3008); bg->SetFillColor(kBlue); sig->SetLineColor(kRed); sig->SetFillStyle(3003); sig->SetFillColor(kRed); bg->SetStats(0); sig->SetStats(0); bg->Draw(); sig->Draw("same"); TLegend *legend = new TLegend(.75, .80, .95, .95); legend->AddEntry(bg, "Background (WW)"); legend->AddEntry(sig, "Signal (Higgs)"); legend->Draw(); mlpa_canvas->cd(0); delete input; }