/*****************************************************************************
 * Project: RooFit                                                           *
 * Package: RooFitModels                                                     *
 *    File: $Id$
 * Authors:                                                                  *
 *   GR, Gerhard Raven,   Nikhef & VU, Gerhard.Raven@nikhef.nl
 *                                                                           *
 * Copyright (c) 2010, Nikhef & VU. All rights reserved.
 *                                                                           *
 * Redistribution and use in source and binary forms,                        *
 * with or without modification, are permitted according to the terms        *
 * listed in LICENSE (http://roofit.sourceforge.net/license.txt)             *
 *****************************************************************************/

//////////////////////////////////////////////////////////////////////////////
//
// BEGIN_HTML
//   Implementation of the so-called real spherical harmonics, using the orthonormal normalization,
// which are related to spherical harmonics as:
//
//  Y_{l0} = Y_l^0   (m=0)
//  Y_{lm} = \frac{1}{\sqrt{2}}  \left( Y_l^m     + (-1)^m     Y_l^{-m}   \right) (m>0)
//  Y_{lm} = \frac{1}{i\sqrt{2}} \left( Y_l^{|m|} - (-1)^{|m|} Y_l^{-|m|} \right) (m<0)
//
// which implies:
//
// Y_{l0}(\cos\theta,\phi) =          N_{l0}   P_l^0    (\cos\theta)              (m=0)
// Y_{lm}(\cos\theta,\phi) = \sqrt{2} N_{lm}   P_l^m    (\cos\theta) cos(|m|\phi) (m>0)
// Y_{lm}(\cos\theta,\phi) = \sqrt{2} N_{l|m|} P_l^{|m|}(\cos\theta) sin(|m|\phi) (m<0)
//
// where
//  N_{lm} = \sqrt{ \frac{2l+1}{4\pi} \frac{ (l-m)! }{ (l+m)! } } 
//
// Note that the normalization corresponds to the orthonormal case,
// and thus we have Int d\cos\theta d\phi Y_{lm} Y_{l'm'} = \delta_{ll'} \delta{mm'}
//
// Note that in addition, this code can also represent the product of two
// (real) spherical harmonics -- it actually uses the fact that Y_{00} = \sqrt{\frac{1}{4\pi}}
// in order to represent a single spherical harmonics by multiplying it
// by \sqrt{4\pi} Y_00, as this makes it trivial to compute the analytical
// integrals, using the orthogonality properties of Y_l^m...
//
// END_HTML
//

#include "RooFit.h"
#include "Riostream.h"
#include <math.h>

#include "RooSpHarmonic.h"
#include "Math/SpecFunc.h"
#include "TMath.h"

using namespace std;

ClassImp(RooSpHarmonic)
;


//_____________________________________________________________________________
namespace {
    inline double N(int l, int m=0) { 
        double n = sqrt( double(2*l+1)/(4*TMath::Pi())*TMath::Factorial(l-m)/TMath::Factorial(l+m) );
        return m==0 ? n : TMath::Sqrt2() * n;
    }
}

//_____________________________________________________________________________
RooSpHarmonic::RooSpHarmonic() :
  _n(0),
  _sgn1(0),
  _sgn2(0)
{
}

//_____________________________________________________________________________
RooSpHarmonic::RooSpHarmonic(const char* name, const char* title, RooAbsReal& ctheta, RooAbsReal& phi, int l, int m) 
 : RooLegendre(name, title,ctheta,l,m<0?-m:m)
 , _phi("phi", "phi", this, phi)
 , _n( 2*sqrt(TMath::Pi())) 
 , _sgn1( m==0 ? 0 : m<0 ? -1 : +1 )
 , _sgn2( 0 )
{
}

//_____________________________________________________________________________
RooSpHarmonic::RooSpHarmonic(const char* name, const char* title, RooAbsReal& ctheta, RooAbsReal& phi, int l1, int m1, int l2, int m2) 
 : RooLegendre(name, title,ctheta,l1, m1<0?-m1:m1,l2,m2<0?-m2:m2)
 , _phi("phi", "phi", this, phi)
 , _n(1)
 , _sgn1( m1==0 ? 0 : m1<0 ? -1 : +1 )
 , _sgn2( m2==0 ? 0 : m2<0 ? -1 : +1 )
{
}

//_____________________________________________________________________________
RooSpHarmonic::RooSpHarmonic(const RooSpHarmonic& other, const char* name) 
 : RooLegendre(other, name)
 , _phi("phi", this,other._phi)
 , _n(other._n)
 , _sgn1( other._sgn1 )
 , _sgn2( other._sgn2 )
{
}

//_____________________________________________________________________________
Double_t RooSpHarmonic::evaluate() const 
{
    double n = _n*N(_l1,_m1)*N(_l2,_m2)*RooLegendre::evaluate();
    if (_sgn1!=0) n *= (_sgn1<0 ? sin(_m1*_phi) : cos(_m1*_phi) );
    if (_sgn2!=0) n *= (_sgn2<0 ? sin(_m2*_phi) : cos(_m2*_phi) );
    return n;
}

namespace {
    bool fullRange(const RooRealProxy& x ,const char* range)  {
      return ( x.min(range) == x.min() && x.max(range) == x.max() ) ; 
    }
}

//_____________________________________________________________________________
Int_t RooSpHarmonic::getAnalyticalIntegral(RooArgSet& allVars, RooArgSet& analVars, const char* rangeName) const 
{
  // TODO: check that phi.max - phi.min = 2 pi... ctheta.max = +1, and ctheta.min = -1
  // we don't support indefinite integrals... maybe one day, when there is a use for it.....
  bool noRange  = ( rangeName == 0 || strlen(rangeName)==0 );
  bool phiOK    = ( noRange || fullRange(_phi,rangeName) );
  bool cthetaOK = ( noRange || fullRange(_ctheta,rangeName) );
  if (cthetaOK && phiOK && matchArgs(allVars, analVars, _ctheta,_phi)) return 3;
  if (            phiOK && matchArgs(allVars, analVars,         _phi)) return 2;
  return RooLegendre::getAnalyticalIntegral(allVars,analVars,rangeName);
}

//_____________________________________________________________________________
Double_t RooSpHarmonic::analyticalIntegral(Int_t code, const char* range) const 
{
  if (code==3) {
    return (_l1==_l2 && _sgn1*_m1==_sgn2*_m2 ) ? _n : 0 ;  
  } else if (code == 2) {
    if ( _sgn1*_m1 != _sgn2*_m2) return 0;
    return ( _m1==0 ? 2 : 1 ) * TMath::Pi()*_n*N(_l1,_m1)*N(_l2,_m2)*RooLegendre::evaluate();
  } else {
    double n = _n*N(_l1,_m1)*N(_l2,_m2)*RooLegendre::analyticalIntegral(code,range);
    if (_sgn1!=0) n *= (_sgn1<0 ? sin(_m1*_phi) : cos(_m1*_phi) );
    if (_sgn2!=0) n *= (_sgn2<0 ? sin(_m2*_phi) : cos(_m2*_phi) );
    return n;
  } 
}

Int_t RooSpHarmonic::getMaxVal( const RooArgSet& vars) const {
    return RooLegendre::getMaxVal(vars);
}

Double_t RooSpHarmonic::maxVal( Int_t code) const {
    double n = _n*N(_l1,_m1)*N(_l2,_m2);
    return n*RooLegendre::maxVal(code);
}
 RooSpHarmonic.cxx:1
 RooSpHarmonic.cxx:2
 RooSpHarmonic.cxx:3
 RooSpHarmonic.cxx:4
 RooSpHarmonic.cxx:5
 RooSpHarmonic.cxx:6
 RooSpHarmonic.cxx:7
 RooSpHarmonic.cxx:8
 RooSpHarmonic.cxx:9
 RooSpHarmonic.cxx:10
 RooSpHarmonic.cxx:11
 RooSpHarmonic.cxx:12
 RooSpHarmonic.cxx:13
 RooSpHarmonic.cxx:14
 RooSpHarmonic.cxx:15
 RooSpHarmonic.cxx:16
 RooSpHarmonic.cxx:17
 RooSpHarmonic.cxx:18
 RooSpHarmonic.cxx:19
 RooSpHarmonic.cxx:20
 RooSpHarmonic.cxx:21
 RooSpHarmonic.cxx:22
 RooSpHarmonic.cxx:23
 RooSpHarmonic.cxx:24
 RooSpHarmonic.cxx:25
 RooSpHarmonic.cxx:26
 RooSpHarmonic.cxx:27
 RooSpHarmonic.cxx:28
 RooSpHarmonic.cxx:29
 RooSpHarmonic.cxx:30
 RooSpHarmonic.cxx:31
 RooSpHarmonic.cxx:32
 RooSpHarmonic.cxx:33
 RooSpHarmonic.cxx:34
 RooSpHarmonic.cxx:35
 RooSpHarmonic.cxx:36
 RooSpHarmonic.cxx:37
 RooSpHarmonic.cxx:38
 RooSpHarmonic.cxx:39
 RooSpHarmonic.cxx:40
 RooSpHarmonic.cxx:41
 RooSpHarmonic.cxx:42
 RooSpHarmonic.cxx:43
 RooSpHarmonic.cxx:44
 RooSpHarmonic.cxx:45
 RooSpHarmonic.cxx:46
 RooSpHarmonic.cxx:47
 RooSpHarmonic.cxx:48
 RooSpHarmonic.cxx:49
 RooSpHarmonic.cxx:50
 RooSpHarmonic.cxx:51
 RooSpHarmonic.cxx:52
 RooSpHarmonic.cxx:53
 RooSpHarmonic.cxx:54
 RooSpHarmonic.cxx:55
 RooSpHarmonic.cxx:56
 RooSpHarmonic.cxx:57
 RooSpHarmonic.cxx:58
 RooSpHarmonic.cxx:59
 RooSpHarmonic.cxx:60
 RooSpHarmonic.cxx:61
 RooSpHarmonic.cxx:62
 RooSpHarmonic.cxx:63
 RooSpHarmonic.cxx:64
 RooSpHarmonic.cxx:65
 RooSpHarmonic.cxx:66
 RooSpHarmonic.cxx:67
 RooSpHarmonic.cxx:68
 RooSpHarmonic.cxx:69
 RooSpHarmonic.cxx:70
 RooSpHarmonic.cxx:71
 RooSpHarmonic.cxx:72
 RooSpHarmonic.cxx:73
 RooSpHarmonic.cxx:74
 RooSpHarmonic.cxx:75
 RooSpHarmonic.cxx:76
 RooSpHarmonic.cxx:77
 RooSpHarmonic.cxx:78
 RooSpHarmonic.cxx:79
 RooSpHarmonic.cxx:80
 RooSpHarmonic.cxx:81
 RooSpHarmonic.cxx:82
 RooSpHarmonic.cxx:83
 RooSpHarmonic.cxx:84
 RooSpHarmonic.cxx:85
 RooSpHarmonic.cxx:86
 RooSpHarmonic.cxx:87
 RooSpHarmonic.cxx:88
 RooSpHarmonic.cxx:89
 RooSpHarmonic.cxx:90
 RooSpHarmonic.cxx:91
 RooSpHarmonic.cxx:92
 RooSpHarmonic.cxx:93
 RooSpHarmonic.cxx:94
 RooSpHarmonic.cxx:95
 RooSpHarmonic.cxx:96
 RooSpHarmonic.cxx:97
 RooSpHarmonic.cxx:98
 RooSpHarmonic.cxx:99
 RooSpHarmonic.cxx:100
 RooSpHarmonic.cxx:101
 RooSpHarmonic.cxx:102
 RooSpHarmonic.cxx:103
 RooSpHarmonic.cxx:104
 RooSpHarmonic.cxx:105
 RooSpHarmonic.cxx:106
 RooSpHarmonic.cxx:107
 RooSpHarmonic.cxx:108
 RooSpHarmonic.cxx:109
 RooSpHarmonic.cxx:110
 RooSpHarmonic.cxx:111
 RooSpHarmonic.cxx:112
 RooSpHarmonic.cxx:113
 RooSpHarmonic.cxx:114
 RooSpHarmonic.cxx:115
 RooSpHarmonic.cxx:116
 RooSpHarmonic.cxx:117
 RooSpHarmonic.cxx:118
 RooSpHarmonic.cxx:119
 RooSpHarmonic.cxx:120
 RooSpHarmonic.cxx:121
 RooSpHarmonic.cxx:122
 RooSpHarmonic.cxx:123
 RooSpHarmonic.cxx:124
 RooSpHarmonic.cxx:125
 RooSpHarmonic.cxx:126
 RooSpHarmonic.cxx:127
 RooSpHarmonic.cxx:128
 RooSpHarmonic.cxx:129
 RooSpHarmonic.cxx:130
 RooSpHarmonic.cxx:131
 RooSpHarmonic.cxx:132
 RooSpHarmonic.cxx:133
 RooSpHarmonic.cxx:134
 RooSpHarmonic.cxx:135
 RooSpHarmonic.cxx:136
 RooSpHarmonic.cxx:137
 RooSpHarmonic.cxx:138
 RooSpHarmonic.cxx:139
 RooSpHarmonic.cxx:140
 RooSpHarmonic.cxx:141
 RooSpHarmonic.cxx:142
 RooSpHarmonic.cxx:143
 RooSpHarmonic.cxx:144
 RooSpHarmonic.cxx:145
 RooSpHarmonic.cxx:146
 RooSpHarmonic.cxx:147
 RooSpHarmonic.cxx:148
 RooSpHarmonic.cxx:149
 RooSpHarmonic.cxx:150
 RooSpHarmonic.cxx:151
 RooSpHarmonic.cxx:152
 RooSpHarmonic.cxx:153
 RooSpHarmonic.cxx:154
 RooSpHarmonic.cxx:155
 RooSpHarmonic.cxx:156
 RooSpHarmonic.cxx:157