#include <iostream>
#include <algorithm>
#include <string>
#include "TMath.h"
#include "TMatrixDSymEigen.h"
#include "RooNDKeysPdf.h"
#include "RooAbsReal.h"
#include "RooRealVar.h"
#include "RooRandom.h"
#include "RooDataSet.h"
#include "RooHist.h"
#include "RooMsgService.h"
// Generic N-dimensional implementation of a kernel estimation p.d.f. This p.d.f. models the distribution
// of an arbitrary input dataset as a superposition of Gaussian kernels, one for each data point,
// each contributing 1/N to the total integral of the p.d.f.
// <p>
// If the 'adaptive mode' is enabled, the width of the Gaussian is adaptively calculated from the
// local density of events, i.e. narrow for regions with high event density to preserve details and
// wide for regions with log event density to promote smoothness. The details of the general algorithm
// are described in the following paper:
// <p>
// Cranmer KS, Kernel Estimation in High-Energy Physics.
// Computer Physics Communications 136:198-207,2001 - e-Print Archive: hep ex/0011057
// <p>
// For multi-dimensional datasets, the kernels are modeled by multidimensional Gaussians. The kernels are
// constructed such that they reflect the correlation coefficients between the observables
// in the input dataset.
// END_HTML
#include "TError.h"
using namespace std;
ClassImp(RooNDKeysPdf)
RooNDKeysPdf::RooNDKeysPdf(const char *name, const char *title,
const RooArgList& varList, RooDataSet& data,
TString options, Double_t rho, Double_t nSigma, Bool_t rotate) :
RooAbsPdf(name,title),
_varList("varList","List of variables",this),
_data(data),
_options(options),
_widthFactor(rho),
_nSigma(nSigma),
_weights(&_weights0),
_rotate(rotate)
{
_varItr = _varList.createIterator() ;
TIterator* varItr = varList.createIterator() ;
RooAbsArg* var ;
for (Int_t i=0; (var = (RooAbsArg*)varItr->Next()); ++i) {
if (!dynamic_cast<RooAbsReal*>(var)) {
coutE(InputArguments) << "RooNDKeysPdf::ctor(" << GetName() << ") ERROR: variable " << var->GetName()
<< " is not of type RooAbsReal" << endl ;
R__ASSERT(0) ;
}
_varList.add(*var) ;
_varName.push_back(var->GetName());
}
delete varItr ;
createPdf();
}
RooNDKeysPdf::RooNDKeysPdf(const char *name, const char *title,
const RooArgList& varList, RooDataSet& data, const TVectorD& rho,
TString options, Double_t nSigma, Bool_t rotate) :
RooAbsPdf(name,title),
_varList("varList","List of variables",this),
_data(data),
_options(options),
_widthFactor(-1.0),
_nSigma(nSigma),
_weights(&_weights0),
_rotate(rotate)
{
_varItr = _varList.createIterator() ;
TIterator* varItr = varList.createIterator() ;
RooAbsArg* var ;
for (Int_t i=0; (var = (RooAbsArg*)varItr->Next()); ++i) {
if (!dynamic_cast<RooAbsReal*>(var)) {
coutE(InputArguments) << "RhhNDKeysPdf::ctor(" << GetName() << ") ERROR: variable " << var->GetName()
<< " is not of type RooAbsReal" << endl ;
R__ASSERT(0) ;
}
_varList.add(*var) ;
_varName.push_back(var->GetName());
}
delete varItr ;
if( _varList.getSize() != rho.GetNrows() ) {
coutE(InputArguments) << "ERROR: RhhNDKeysPdf::RhhNDKeysPdf() : The vector-size of rho is different from that of varList."
<< "Unable to create the PDF." << endl;
R__ASSERT ( _varList.getSize()==rho.GetNrows() );
}
_rho.resize( rho.GetNrows() );
for (Int_t j=0; j<rho.GetNrows(); j++) { _rho[j]=rho[j]; }
createPdf();
}
RooNDKeysPdf::RooNDKeysPdf(const char *name, const char *title,
RooAbsReal& x, RooDataSet& data,
Mirror mirror, Double_t rho, Double_t nSigma, Bool_t rotate) :
RooAbsPdf(name,title),
_varList("varList","List of variables",this),
_data(data),
_options("a"),
_widthFactor(rho),
_nSigma(nSigma),
_weights(&_weights0),
_rotate(rotate)
{
_varItr = _varList.createIterator() ;
_varList.add(x) ;
_varName.push_back(x.GetName());
if (mirror!=NoMirror) {
if (mirror!=MirrorBoth)
coutW(InputArguments) << "RooNDKeysPdf::RooNDKeysPdf() : Warning : asymmetric mirror(s) no longer supported." << endl;
_options="m";
}
createPdf();
}
RooNDKeysPdf::RooNDKeysPdf(const char *name, const char *title, RooAbsReal& x, RooAbsReal & y,
RooDataSet& data, TString options, Double_t rho, Double_t nSigma, Bool_t rotate) :
RooAbsPdf(name,title),
_varList("varList","List of variables",this),
_data(data),
_options(options),
_widthFactor(rho),
_nSigma(nSigma),
_weights(&_weights0),
_rotate(rotate)
{
_varItr = _varList.createIterator() ;
_varList.add(RooArgSet(x,y)) ;
_varName.push_back(x.GetName());
_varName.push_back(y.GetName());
createPdf();
}
RooNDKeysPdf::RooNDKeysPdf(const RooNDKeysPdf& other, const char* name) :
RooAbsPdf(other,name),
_varList("varList",this,other._varList),
_data(other._data),
_options(other._options),
_widthFactor(other._widthFactor),
_nSigma(other._nSigma),
_weights(&_weights0),
_rotate(other._rotate)
{
_varItr = _varList.createIterator() ;
_fixedShape = other._fixedShape;
_mirror = other._mirror;
_debug = other._debug;
_verbose = other._verbose;
_sqrt2pi = other._sqrt2pi;
_nDim = other._nDim;
_nEvents = other._nEvents;
_nEventsM = other._nEventsM;
_nEventsW = other._nEventsW;
_d = other._d;
_n = other._n;
_dataPts = other._dataPts;
_dataPtsR = other._dataPtsR;
_weights0 = other._weights0;
_weights1 = other._weights1;
if (_options.Contains("a")) { _weights = &_weights1; }
_sortTVIdcs = other._sortTVIdcs;
_varName = other._varName;
_rho = other._rho;
_x = other._x;
_x0 = other._x0 ;
_x1 = other._x1 ;
_x2 = other._x2 ;
_xDatLo = other._xDatLo;
_xDatHi = other._xDatHi;
_xDatLo3s = other._xDatLo3s;
_xDatHi3s = other._xDatHi3s;
_mean = other._mean;
_sigma = other._sigma;
_netFluxZ = other._netFluxZ;
_nEventsBW = other._nEventsBW;
_nEventsBMSW = other._nEventsBMSW;
_xVarLo = other._xVarLo;
_xVarHi = other._xVarHi;
_xVarLoM3s = other._xVarLoM3s;
_xVarLoP3s = other._xVarLoP3s;
_xVarHiM3s = other._xVarHiM3s;
_xVarHiP3s = other._xVarHiP3s;
_bpsIdcs = other._bpsIdcs;
_sIdcs = other._sIdcs;
_bIdcs = other._bIdcs;
_bmsIdcs = other._bmsIdcs;
_rangeBoxInfo= other._rangeBoxInfo ;
_fullBoxInfo = other._fullBoxInfo ;
_idx = other._idx;
_minWeight = other._minWeight;
_maxWeight = other._maxWeight;
_wMap = other._wMap;
_covMat = new TMatrixDSym(*other._covMat);
_corrMat = new TMatrixDSym(*other._corrMat);
_rotMat = new TMatrixD(*other._rotMat);
_sigmaR = new TVectorD(*other._sigmaR);
_dx = new TVectorD(*other._dx);
_sigmaAvgR = other._sigmaAvgR;
}
RooNDKeysPdf::~RooNDKeysPdf()
{
if (_varItr) delete _varItr;
if (_covMat) delete _covMat;
if (_corrMat) delete _corrMat;
if (_rotMat) delete _rotMat;
if (_sigmaR) delete _sigmaR;
if (_dx) delete _dx;
while ( !_rangeBoxInfo.empty() ) {
map<pair<string,int>,BoxInfo*>::iterator iter = _rangeBoxInfo.begin();
BoxInfo* box= (*iter).second;
_rangeBoxInfo.erase(iter);
delete box;
}
_dataPts.clear();
_dataPtsR.clear();
_weights0.clear();
_weights1.clear();
_sortTVIdcs.clear();
}
void
RooNDKeysPdf::createPdf(Bool_t firstCall) const
{
if (firstCall) {
setOptions();
initialize();
}
loadDataSet(firstCall);
if (_mirror) mirrorDataSet();
loadWeightSet();
sortDataIndices();
calculateBandWidth();
}
void
RooNDKeysPdf::setOptions() const
{
_options.ToLower();
if( _options.Contains("a") ) { _weights = &_weights1; }
else { _weights = &_weights0; }
if( _options.Contains("m") ) _mirror = true;
else _mirror = false;
if( _options.Contains("d") ) _debug = true;
else _debug = false;
if( _options.Contains("v") ) { _debug = true; _verbose = true; }
else { _debug = false; _verbose = false; }
cxcoutD(InputArguments) << "RooNDKeysPdf::setOptions() options = " << _options
<< "\n\tbandWidthType = " << _options.Contains("a")
<< "\n\tmirror = " << _mirror
<< "\n\tdebug = " << _debug
<< "\n\tverbose = " << _verbose
<< endl;
if (_nSigma<2.0) {
coutW(InputArguments) << "RooNDKeysPdf::setOptions() : Warning : nSigma = " << _nSigma << " < 2.0. "
<< "Calculated normalization could be too large."
<< endl;
}
}
void
RooNDKeysPdf::initialize() const
{
_sqrt2pi = sqrt(2.0*TMath::Pi()) ;
_nDim = _varList.getSize();
_nEvents = (Int_t)_data.numEntries();
_nEventsM = _nEvents;
_fixedShape= kFALSE;
if(_nDim==0) {
coutE(InputArguments) << "ERROR: RooNDKeysPdf::initialize() : The observable list is empty. "
<< "Unable to begin generating the PDF." << endl;
R__ASSERT (_nDim!=0);
}
if(_nEvents==0) {
coutE(InputArguments) << "ERROR: RooNDKeysPdf::initialize() : The input data set is empty. "
<< "Unable to begin generating the PDF." << endl;
R__ASSERT (_nEvents!=0);
}
_d = static_cast<Double_t>(_nDim);
vector<Double_t> dummy(_nDim,0.);
_dataPts.resize(_nEvents,dummy);
_weights0.resize(_nEvents,dummy);
_sortTVIdcs.resize(_nDim);
if (_widthFactor>0) { _rho.resize(_nDim,_widthFactor); }
_x.resize(_nDim,0.);
_x0.resize(_nDim,0.);
_x1.resize(_nDim,0.);
_x2.resize(_nDim,0.);
_mean.resize(_nDim,0.);
_sigma.resize(_nDim,0.);
_xDatLo.resize(_nDim,0.);
_xDatHi.resize(_nDim,0.);
_xDatLo3s.resize(_nDim,0.);
_xDatHi3s.resize(_nDim,0.);
boxInfoInit(&_fullBoxInfo,0,0xFFFF);
_minWeight=0;
_maxWeight=0;
_wMap.clear();
_covMat = 0;
_corrMat= 0;
_rotMat = 0;
_sigmaR = 0;
_dx = new TVectorD(_nDim); _dx->Zero();
_dataPtsR.resize(_nEvents,*_dx);
_varItr->Reset() ;
RooRealVar* var ;
for(Int_t j=0; (var=(RooRealVar*)_varItr->Next()); ++j) {
_xDatLo[j] = var->getMin();
_xDatHi[j] = var->getMax();
}
}
void
RooNDKeysPdf::loadDataSet(Bool_t firstCall) const
{
_nEventsW=0.;
TMatrixD mat(_nDim,_nDim);
if (!_covMat) _covMat = new TMatrixDSym(_nDim);
if (!_corrMat) _corrMat= new TMatrixDSym(_nDim);
if (!_rotMat) _rotMat = new TMatrixD(_nDim,_nDim);
if (!_sigmaR) _sigmaR = new TVectorD(_nDim);
mat.Zero();
_covMat->Zero();
_corrMat->Zero();
_rotMat->Zero();
_sigmaR->Zero();
const RooArgSet* values= _data.get();
vector<RooRealVar*> dVars(_nDim);
for (Int_t j=0; j<_nDim; j++) {
dVars[j] = (RooRealVar*)values->find(_varName[j].c_str());
_x0[j]=_x1[j]=_x2[j]=0.;
}
_idx.clear();
for (Int_t i=0; i<_nEvents; i++) {
_data.get(i);
_idx.push_back(i);
vector<Double_t>& point = _dataPts[i];
TVectorD& pointV = _dataPtsR[i];
Double_t myweight = _data.weight();
if ( TMath::Abs(myweight)>_maxWeight ) { _maxWeight = TMath::Abs(myweight); }
_nEventsW += myweight;
for (Int_t j=0; j<_nDim; j++) {
for (Int_t k=0; k<_nDim; k++) {
mat(j,k) += dVars[j]->getVal() * dVars[k]->getVal() * myweight;
}
if (firstCall)
point[j] = pointV[j] = dVars[j]->getVal();
_x0[j] += 1. * myweight;
_x1[j] += point[j] * myweight ;
_x2[j] += point[j] * point[j] * myweight ;
if (_x2[j]!=_x2[j]) exit(3);
if (firstCall) {
if (point[j]<_xDatLo[j]) { _xDatLo[j]=point[j]; }
if (point[j]>_xDatHi[j]) { _xDatHi[j]=point[j]; }
}
}
}
_n = TMath::Power(4./(_nEventsW*(_d+2.)), 1./(_d+4.)) ;
_minWeight = (0.5 - TMath::Erf(_nSigma/sqrt(2.))/2.) * _maxWeight;
for (Int_t j=0; j<_nDim; j++) {
_mean[j] = _x1[j]/_x0[j];
_sigma[j] = sqrt(_x2[j]/_x0[j]-_mean[j]*_mean[j]);
}
TMatrixDSym covMatRho(_nDim);
for (Int_t j=0; j<_nDim; j++) {
for (Int_t k=0; k<_nDim; k++) {
(*_covMat)(j,k) = mat(j,k)/_x0[j] - _mean[j]*_mean[k];
covMatRho(j,k) = (mat(j,k)/_x0[j] - _mean[j]*_mean[k]) * _rho[j] * _rho[k];
}
}
TMatrixDSymEigen evCalculatorRho(covMatRho);
*_rotMat = evCalculatorRho.GetEigenVectors();
*_rotMat = _rotMat->T();
*_sigmaR = evCalculatorRho.GetEigenValues();
for (Int_t j=0; j<_nDim; j++) { _rho[j] = 1.; }
for (Int_t j=0; j<_nDim; j++) { (*_sigmaR)[j] = sqrt((*_sigmaR)[j]); }
for (Int_t j=0; j<_nDim; j++) {
for (Int_t k=0; k<_nDim; k++)
(*_corrMat)(j,k) = (*_covMat)(j,k)/(_sigma[j]*_sigma[k]) ;
}
if (_verbose) {
_rotMat->Print();
_corrMat->Print();
_sigmaR->Print();
}
if (!_rotate) {
_rotMat->Print();
_sigmaR->Print();
TMatrixD haar(_nDim,_nDim);
TMatrixD unit(TMatrixD::kUnit,haar);
*_rotMat = unit;
for (Int_t j=0; j<_nDim; j++) { (*_sigmaR)[j] = _sigma[j]; }
_rotMat->Print();
_sigmaR->Print();
}
TMatrixDSymEigen evCalculator(*_covMat);
TVectorD sigmaRraw = evCalculator.GetEigenValues();
for (Int_t j=0; j<_nDim; j++) { sigmaRraw[j] = sqrt(sigmaRraw[j]); }
_sigmaAvgR=1.;
for (Int_t j=0; j<_nDim; j++) { _sigmaAvgR *= sigmaRraw[j]; }
_sigmaAvgR = TMath::Power(_sigmaAvgR, 1./_d) ;
for (Int_t i=0; i<_nEvents; i++) {
TVectorD& pointR = _dataPtsR[i];
pointR *= *_rotMat;
}
coutI(Contents) << "RooNDKeysPdf::loadDataSet(" << this << ")"
<< "\n Number of events in dataset: " << _nEvents
<< "\n Weighted number of events in dataset: " << _nEventsW
<< endl;
}
void
RooNDKeysPdf::mirrorDataSet() const
{
for (Int_t j=0; j<_nDim; j++) {
_xDatLo3s[j] = _xDatLo[j] + _nSigma * (_rho[j] * _n * _sigma[j]);
_xDatHi3s[j] = _xDatHi[j] - _nSigma * (_rho[j] * _n * _sigma[j]);
}
vector<Double_t> dummy(_nDim,0.);
for (Int_t i=0; i<_nEvents; i++) {
vector<Double_t>& x = _dataPts[i];
Int_t size = 1;
vector<vector<Double_t> > mpoints(size,dummy);
vector<vector<Int_t> > mjdcs(size);
for (Int_t j=0; j<_nDim; j++) {
vector<Int_t>& mjdxK = mjdcs[0];
vector<Double_t>& mpointK = mpoints[0];
if ((x[j]>_xDatLo[j] && x[j]<_xDatLo3s[j]) && x[j]<(_xDatLo[j]+_xDatHi[j])/2.) {
mpointK[j] = 2.*_xDatLo[j]-x[j];
mjdxK.push_back(j);
} else if ((x[j]<_xDatHi[j] && x[j]>_xDatHi3s[j]) && x[j]>(_xDatLo[j]+_xDatHi[j])/2.) {
mpointK[j] = 2.*_xDatHi[j]-x[j];
mjdxK.push_back(j);
}
}
vector<Int_t>& mjdx0 = mjdcs[0];
if (size==1 && mjdx0.size()==0) continue;
vector<Int_t>& mjdx = mjdcs[0];
vector<Double_t>& mpoint = mpoints[0];
Int_t eMir = 1 << mjdx.size();
vector<vector<Double_t> > epoints(eMir,x);
for (Int_t m=0; m<Int_t(mjdx.size()); m++) {
Int_t size1 = 1 << m;
Int_t size2 = 1 << (m+1);
for (Int_t l=size1; l<size2; ++l) {
epoints[l] = epoints[l-size1];
vector<Double_t>& epoint = epoints[l];
epoint[mjdx[Int_t(mjdx.size()-1)-m]] = mpoint[mjdx[Int_t(mjdx.size()-1)-m]];
}
}
epoints.erase(epoints.begin());
TVectorD pointR(_nDim);
for (Int_t m=0; m<Int_t(epoints.size()); m++) {
_idx.push_back(i);
_dataPts.push_back(epoints[m]);
for (Int_t j=0; j<_nDim; j++) { pointR[j] = (epoints[m])[j]; }
pointR *= *_rotMat;
_dataPtsR.push_back(pointR);
}
epoints.clear();
mpoints.clear();
mjdcs.clear();
}
_nEventsM = Int_t(_dataPts.size());
}
void
RooNDKeysPdf::loadWeightSet() const
{
_wMap.clear();
for (Int_t i=0; i<_nEventsM; i++) {
_data.get(_idx[i]);
Double_t myweight = _data.weight();
_wMap[i] = myweight;
}
coutI(Contents) << "RooNDKeysPdf::loadWeightSet(" << this << ") : Number of weighted events : " << _wMap.size() << endl;
}
void
RooNDKeysPdf::calculateShell(BoxInfo* bi) const
{
for (Int_t j=0; j<_nDim; j++) {
if (bi->xVarLo[j]==_xDatLo[j] && bi->xVarHi[j]==_xDatHi[j]) {
bi->netFluxZ = bi->netFluxZ && kTRUE;
} else { bi->netFluxZ = kFALSE; }
bi->xVarLoM3s[j] = bi->xVarLo[j] - _nSigma * (_rho[j] * _n * _sigma[j]);
bi->xVarLoP3s[j] = bi->xVarLo[j] + _nSigma * (_rho[j] * _n * _sigma[j]);
bi->xVarHiM3s[j] = bi->xVarHi[j] - _nSigma * (_rho[j] * _n * _sigma[j]);
bi->xVarHiP3s[j] = bi->xVarHi[j] + _nSigma * (_rho[j] * _n * _sigma[j]);
}
map<Int_t,Double_t>::iterator wMapItr = _wMap.begin();
for (; wMapItr!=_wMap.end(); ++wMapItr) {
Int_t i = (*wMapItr).first;
const vector<Double_t>& x = _dataPts[i];
Bool_t inVarRange(kTRUE);
Bool_t inVarRangePlusShell(kTRUE);
for (Int_t j=0; j<_nDim; j++) {
if (x[j]>bi->xVarLo[j] && x[j]<bi->xVarHi[j]) {
inVarRange = inVarRange && kTRUE;
} else { inVarRange = inVarRange && kFALSE; }
if (x[j]>bi->xVarLoM3s[j] && x[j]<bi->xVarHiP3s[j]) {
inVarRangePlusShell = inVarRangePlusShell && kTRUE;
} else { inVarRangePlusShell = inVarRangePlusShell && kFALSE; }
}
if (inVarRange) {
bi->bIdcs.push_back(i);
}
if (inVarRangePlusShell) {
bi->bpsIdcs[i] = kTRUE;
Bool_t inShell(kFALSE);
for (Int_t j=0; j<_nDim; j++) {
if ((x[j]>bi->xVarLoM3s[j] && x[j]<bi->xVarLoP3s[j]) && x[j]<(bi->xVarLo[j]+bi->xVarHi[j])/2.) {
inShell = kTRUE;
} else if ((x[j]>bi->xVarHiM3s[j] && x[j]<bi->xVarHiP3s[j]) && x[j]>(bi->xVarLo[j]+bi->xVarHi[j])/2.) {
inShell = kTRUE;
}
}
if (inShell) bi->sIdcs.push_back(i);
else {
bi->bmsIdcs.push_back(i);
}
}
}
coutI(Contents) << "RooNDKeysPdf::calculateShell() : "
<< "\n Events in shell " << bi->sIdcs.size()
<< "\n Events in box " << bi->bIdcs.size()
<< "\n Events in box and shell " << bi->bpsIdcs.size()
<< endl;
}
void
RooNDKeysPdf::calculatePreNorm(BoxInfo* bi) const
{
for (Int_t i=0; i<Int_t(bi->bmsIdcs.size()); i++)
bi->nEventsBMSW += _wMap[bi->bmsIdcs[i]];
for (Int_t i=0; i<Int_t(bi->bIdcs.size()); i++)
bi->nEventsBW += _wMap[bi->bIdcs[i]];
cxcoutD(Eval) << "RooNDKeysPdf::calculatePreNorm() : "
<< "\n nEventsBMSW " << bi->nEventsBMSW
<< "\n nEventsBW " << bi->nEventsBW
<< endl;
}
void
RooNDKeysPdf::sortDataIndices(BoxInfo* bi) const
{
itVec itrVecR;
vector<TVectorD>::iterator dpRItr = _dataPtsR.begin();
for (Int_t i=0; dpRItr!=_dataPtsR.end(); ++dpRItr, ++i) {
if (bi) {
if (bi->bpsIdcs.find(i)!=bi->bpsIdcs.end())
itrVecR.push_back(itPair(i,dpRItr));
} else itrVecR.push_back(itPair(i,dpRItr));
}
for (Int_t j=0; j<_nDim; j++) {
_sortTVIdcs[j].clear();
sort(itrVecR.begin(),itrVecR.end(),SorterTV_L2H(j));
_sortTVIdcs[j] = itrVecR;
}
for (Int_t j=0; j<_nDim; j++) {
cxcoutD(Eval) << "RooNDKeysPdf::sortDataIndices() : Number of sorted events : " << _sortTVIdcs[j].size() << endl;
}
}
void
RooNDKeysPdf::calculateBandWidth() const
{
cxcoutD(Eval) << "RooNDKeysPdf::calculateBandWidth()" << endl;
if(!_options.Contains("a")) {
cxcoutD(Eval) << "RooNDKeysPdf::calculateBandWidth() Using static bandwidth." << endl;
}
for (Int_t i=0; i<_nEvents; i++) {
vector<Double_t>& weight = _weights0[i];
for (Int_t j=0; j<_nDim; j++) {
weight[j] = _rho[j] * _n * (*_sigmaR)[j] ;
}
}
if(_options.Contains("a")) {
cxcoutD(Eval) << "RooNDKeysPdf::calculateBandWidth() Using adaptive bandwidth." << endl;
double sqrt12=sqrt(12.);
double sqrtSigmaAvgR=sqrt(_sigmaAvgR);
vector<Double_t> dummy(_nDim,0.);
_weights1.resize(_nEvents,dummy);
for(Int_t i=0; i<_nEvents; ++i) {
vector<Double_t>& x = _dataPts[i];
Double_t f = TMath::Power( gauss(x,_weights0)/_nEventsW , -1./(2.*_d) ) ;
vector<Double_t>& weight = _weights1[i];
for (Int_t j=0; j<_nDim; j++) {
Double_t norm = (_rho[j]*_n*(*_sigmaR)[j]) / sqrtSigmaAvgR ;
weight[j] = norm * f / sqrt12 ;
}
}
_weights = &_weights1;
}
}
Double_t
RooNDKeysPdf::gauss(vector<Double_t>& x, vector<vector<Double_t> >& weights) const
{
if(_nEvents==0) return 0.;
Double_t z=0.;
map<Int_t,Bool_t> ibMap;
ibMap.clear();
loopRange(x,ibMap);
map<Int_t,Bool_t>::iterator ibMapItr = ibMap.begin();
for (; ibMapItr!=ibMap.end(); ++ibMapItr) {
Int_t i = (*ibMapItr).first;
Double_t g(1.);
if(i>=(Int_t)_idx.size()) {continue;}
const vector<Double_t>& point = _dataPts[i];
const vector<Double_t>& weight = weights[_idx[i]];
for (Int_t j=0; j<_nDim; j++) {
(*_dx)[j] = x[j]-point[j];
}
if (_nDim>1) {
*_dx *= *_rotMat;
}
for (Int_t j=0; j<_nDim; j++) {
Double_t r = (*_dx)[j];
Double_t c = 1./(2.*weight[j]*weight[j]);
g *= exp( -c*r*r );
g *= 1./(_sqrt2pi*weight[j]);
}
z += (g*_wMap[_idx[i]]);
}
return z;
}
void
RooNDKeysPdf::loopRange(vector<Double_t>& x, map<Int_t,Bool_t>& ibMap) const
{
TVectorD xRm(_nDim);
TVectorD xRp(_nDim);
for (Int_t j=0; j<_nDim; j++) { xRm[j] = xRp[j] = x[j]; }
xRm *= *_rotMat;
xRp *= *_rotMat;
for (Int_t j=0; j<_nDim; j++) {
xRm[j] -= _nSigma * (_rho[j] * _n * (*_sigmaR)[j]);
xRp[j] += _nSigma * (_rho[j] * _n * (*_sigmaR)[j]);
}
vector<TVectorD> xvecRm(1,xRm);
vector<TVectorD> xvecRp(1,xRp);
map<Int_t,Bool_t> ibMapRT;
for (Int_t j=0; j<_nDim; j++) {
ibMap.clear();
itVec::iterator lo = lower_bound(_sortTVIdcs[j].begin(), _sortTVIdcs[j].end(),
itPair(0,xvecRm.begin()), SorterTV_L2H(j));
itVec::iterator hi = upper_bound(_sortTVIdcs[j].begin(), _sortTVIdcs[j].end(),
itPair(0,xvecRp.begin()), SorterTV_L2H(j));
itVec::iterator it=lo;
if (j==0) {
if (_nDim==1) { for (it=lo; it!=hi; ++it) ibMap[(*it).first] = kTRUE; }
else { for (it=lo; it!=hi; ++it) ibMapRT[(*it).first] = kTRUE; }
continue;
}
for (it=lo; it!=hi; ++it)
if (ibMapRT.find((*it).first)!=ibMapRT.end()) { ibMap[(*it).first] = kTRUE; }
ibMapRT.clear();
if (j!=_nDim-1) { ibMapRT = ibMap; }
}
}
void
RooNDKeysPdf::boxInfoInit(BoxInfo* bi, const char* rangeName, Int_t ) const
{
vector<Bool_t> doInt(_nDim,kTRUE);
bi->filled = kFALSE;
bi->xVarLo.resize(_nDim,0.);
bi->xVarHi.resize(_nDim,0.);
bi->xVarLoM3s.resize(_nDim,0.);
bi->xVarLoP3s.resize(_nDim,0.);
bi->xVarHiM3s.resize(_nDim,0.);
bi->xVarHiP3s.resize(_nDim,0.);
bi->netFluxZ = kTRUE;
bi->bpsIdcs.clear();
bi->bIdcs.clear();
bi->sIdcs.clear();
bi->bmsIdcs.clear();
bi->nEventsBMSW=0.;
bi->nEventsBW=0.;
_varItr->Reset() ;
RooRealVar* var ;
for(Int_t j=0; (var=(RooRealVar*)_varItr->Next()); ++j) {
if (doInt[j]) {
bi->xVarLo[j] = var->getMin(rangeName);
bi->xVarHi[j] = var->getMax(rangeName);
} else {
bi->xVarLo[j] = var->getVal() ;
bi->xVarHi[j] = var->getVal() ;
}
}
}
Double_t
RooNDKeysPdf::evaluate() const
{
_varItr->Reset() ;
RooAbsReal* var ;
const RooArgSet* nset = _varList.nset() ;
for(Int_t j=0; (var=(RooAbsReal*)_varItr->Next()); ++j) {
_x[j] = var->getVal(nset);
}
Double_t val = gauss(_x,*_weights);
if (val>=1E-20)
return val ;
else
return (1E-20) ;
}
Int_t
RooNDKeysPdf::getAnalyticalIntegral(RooArgSet& allVars, RooArgSet& analVars, const char* rangeName) const
{
if (rangeName) return 0 ;
Int_t code=0;
if (matchArgs(allVars,analVars,RooArgSet(_varList))) { code=1; }
return code;
}
Double_t
RooNDKeysPdf::analyticalIntegral(Int_t code, const char* rangeName) const
{
cxcoutD(Eval) << "Calling RooNDKeysPdf::analyticalIntegral(" << GetName() << ") with code " << code
<< " and rangeName " << (rangeName?rangeName:"<none>") << endl;
Int_t nComb = 1 << (_nDim);
R__ASSERT(code>=1 && code<nComb) ;
vector<Bool_t> doInt(_nDim,kTRUE);
BoxInfo* bi(0);
if (rangeName) {
string rangeNameStr(rangeName) ;
bi = _rangeBoxInfo[make_pair(rangeNameStr,code)] ;
if (!bi) {
bi = new BoxInfo ;
_rangeBoxInfo[make_pair(rangeNameStr,code)] = bi ;
boxInfoInit(bi,rangeName,code);
}
} else bi= &_fullBoxInfo ;
Bool_t newBounds(kFALSE);
_varItr->Reset() ;
RooRealVar* var ;
for(Int_t j=0; (var=(RooRealVar*)_varItr->Next()); ++j) {
if ((var->getMin(rangeName)-bi->xVarLo[j]!=0) ||
(var->getMax(rangeName)-bi->xVarHi[j]!=0)) {
newBounds = kTRUE;
}
}
if (newBounds) {
cxcoutD(Eval) << "RooNDKeysPdf::analyticalIntegral() : Found new boundaries ... " << (rangeName?rangeName:"<none>") << endl;
boxInfoInit(bi,rangeName,code);
}
if (!bi->filled || newBounds) {
calculateShell(bi);
calculatePreNorm(bi);
bi->filled = kTRUE;
sortDataIndices(bi);
}
Double_t norm=bi->nEventsBW;
if (_mirror && bi->netFluxZ) {
cxcoutD(Eval) << "RooNDKeysPdf::analyticalIntegral() : Using mirrored normalization : " << bi->nEventsBW << endl;
return bi->nEventsBW;
}
else
{
norm = bi->nEventsBMSW;
if (norm<0.) norm=0.;
for (Int_t i=0; i<Int_t(bi->sIdcs.size()); ++i) {
Double_t prob=1.;
const vector<Double_t>& x = _dataPts[bi->sIdcs[i]];
const vector<Double_t>& weight = (*_weights)[_idx[bi->sIdcs[i]]];
vector<Double_t> chi(_nDim,100.);
for (Int_t j=0; j<_nDim; j++) {
if(!doInt[j]) continue;
if ((x[j]>bi->xVarLoM3s[j] && x[j]<bi->xVarLoP3s[j]) && x[j]<(bi->xVarLo[j]+bi->xVarHi[j])/2.)
chi[j] = (x[j]-bi->xVarLo[j])/weight[j];
else if ((x[j]>bi->xVarHiM3s[j] && x[j]<bi->xVarHiP3s[j]) && x[j]>(bi->xVarLo[j]+bi->xVarHi[j])/2.)
chi[j] = (bi->xVarHi[j]-x[j])/weight[j];
if (chi[j]>0)
prob *= (0.5 + TMath::Erf(fabs(chi[j])/sqrt(2.))/2.);
else
prob *= (0.5 - TMath::Erf(fabs(chi[j])/sqrt(2.))/2.);
}
norm += prob * _wMap[_idx[bi->sIdcs[i]]];
}
cxcoutD(Eval) << "RooNDKeysPdf::analyticalIntegral() : Final normalization : " << norm << " " << bi->nEventsBW << endl;
return norm;
}
}