// RooGaussKronrodIntegrator1D implements the Gauss-Kronrod integration algorithm.
//
// An Gaussian quadrature method for numerical integration in which
// error is estimation based on evaluation at special points known as
// "Kronrod points." By suitably picking these points, abscissas from
// previous iterations can be reused as part of the new set of points,
// whereas usual Gaussian quadrature would require recomputation of
// all abscissas at each iteration.
//
// This class automatically handles (-inf,+inf) integrals by dividing
// the integration in three regions (-inf,-1), (-1,1), (1,inf) and
// calculating the 1st and 3rd term using a x -> 1/x coordinate
// transformation
//
// This class embeds the Gauss-Kronrod integrator from the GNU
// Scientific Library version 1.5 and applies the 10-, 21-, 43- and
// 87-point rule in succession until the required target precision is
// reached
// END_HTML
#include "RooFit.h"
#include <assert.h>
#include <math.h>
#include <float.h>
#include <stdlib.h>
#include "Riostream.h"
#include "TMath.h"
#include "RooGaussKronrodIntegrator1D.h"
#include "RooArgSet.h"
#include "RooRealVar.h"
#include "RooNumber.h"
#include "RooNumIntFactory.h"
#include "RooIntegratorBinding.h"
#include "RooMsgService.h"
using namespace std;
ClassImp(RooGaussKronrodIntegrator1D)
;
struct gsl_function_struct
{
double (* function) (double x, void * params);
void * params;
};
typedef struct gsl_function_struct gsl_function ;
#define GSL_FN_EVAL(F,x) (*((F)->function))(x,(F)->params)
int gsl_integration_qng (const gsl_function * f,
double a, double b,
double epsabs, double epsrel,
double *result, double *abserr,
size_t * neval);
void RooGaussKronrodIntegrator1D::registerIntegrator(RooNumIntFactory& fact)
{
fact.storeProtoIntegrator(new RooGaussKronrodIntegrator1D(),RooArgSet()) ;
}
RooGaussKronrodIntegrator1D::RooGaussKronrodIntegrator1D() : _x(0)
{
}
RooGaussKronrodIntegrator1D::RooGaussKronrodIntegrator1D(const RooAbsFunc& function, const RooNumIntConfig& config) :
RooAbsIntegrator(function),
_epsAbs(config.epsRel()),
_epsRel(config.epsAbs())
{
_useIntegrandLimits= kTRUE;
_valid= initialize();
}
RooGaussKronrodIntegrator1D::RooGaussKronrodIntegrator1D(const RooAbsFunc& function,
Double_t xmin, Double_t xmax, const RooNumIntConfig& config) :
RooAbsIntegrator(function),
_epsAbs(config.epsRel()),
_epsRel(config.epsAbs()),
_xmin(xmin),
_xmax(xmax)
{
_useIntegrandLimits= kFALSE;
_valid= initialize();
}
RooAbsIntegrator* RooGaussKronrodIntegrator1D::clone(const RooAbsFunc& function, const RooNumIntConfig& config) const
{
return new RooGaussKronrodIntegrator1D(function,config) ;
}
Bool_t RooGaussKronrodIntegrator1D::initialize()
{
_x = new Double_t[_function->getDimension()] ;
return checkLimits();
}
RooGaussKronrodIntegrator1D::~RooGaussKronrodIntegrator1D()
{
if (_x) {
delete[] _x ;
}
}
Bool_t RooGaussKronrodIntegrator1D::setLimits(Double_t* xmin, Double_t* xmax)
{
if(_useIntegrandLimits) {
oocoutE((TObject*)0,Eval) << "RooGaussKronrodIntegrator1D::setLimits: cannot override integrand's limits" << endl;
return kFALSE;
}
_xmin= *xmin;
_xmax= *xmax;
return checkLimits();
}
Bool_t RooGaussKronrodIntegrator1D::checkLimits() const
{
if(_useIntegrandLimits) {
assert(0 != integrand() && integrand()->isValid());
_xmin= integrand()->getMinLimit(0);
_xmax= integrand()->getMaxLimit(0);
}
return kTRUE ;
}
double RooGaussKronrodIntegrator1D_GSL_GlueFunction(double x, void *data)
{
RooGaussKronrodIntegrator1D* instance = (RooGaussKronrodIntegrator1D*) data ;
return instance->integrand(instance->xvec(x)) ;
}
Double_t RooGaussKronrodIntegrator1D::integral(const Double_t *yvec)
{
assert(isValid());
if (yvec) {
UInt_t i ; for (i=0 ; i<_function->getDimension()-1 ; i++) {
_x[i+1] = yvec[i] ;
}
}
gsl_function F;
F.function = &RooGaussKronrodIntegrator1D_GSL_GlueFunction ;
F.params = this ;
double result, error;
size_t neval = 0 ;
gsl_integration_qng (&F, _xmin, _xmax, _epsAbs, _epsRel, &result, &error, &neval);
return result;
}
#define GSL_SUCCESS 0
#define GSL_EBADTOL 13 /* user specified an invalid tolerance */
#define GSL_ETOL 14 /* failed to reach the specified tolerance */
#define GSL_ERROR(a,b) oocoutE((TObject*)0,Eval) << "RooGaussKronrodIntegrator1D::integral() ERROR: " << a << endl ; return b ;
#define GSL_DBL_MIN 2.2250738585072014e-308
#define GSL_DBL_EPSILON 2.2204460492503131e-16
int gsl_integration_qng (const gsl_function * f,
double a, double b,
double epsabs, double epsrel,
double *result, double *abserr,
size_t * neval);
static double rescale_error (double err, const double result_abs, const double result_asc) ;
static double
rescale_error (double err, const double result_abs, const double result_asc)
{
err = fabs(err) ;
if (result_asc != 0 && err != 0)
{
double scale = TMath::Power((200 * err / result_asc), 1.5) ;
if (scale < 1)
{
err = result_asc * scale ;
}
else
{
err = result_asc ;
}
}
if (result_abs > GSL_DBL_MIN / (50 * GSL_DBL_EPSILON))
{
double min_err = 50 * GSL_DBL_EPSILON * result_abs ;
if (min_err > err)
{
err = min_err ;
}
}
return err ;
}
static const double x1[5] = {
0.973906528517171720077964012084452,
0.865063366688984510732096688423493,
0.679409568299024406234327365114874,
0.433395394129247190799265943165784,
0.148874338981631210884826001129720
} ;
static const double w10[5] = {
0.066671344308688137593568809893332,
0.149451349150580593145776339657697,
0.219086362515982043995534934228163,
0.269266719309996355091226921569469,
0.295524224714752870173892994651338
} ;
static const double x2[5] = {
0.995657163025808080735527280689003,
0.930157491355708226001207180059508,
0.780817726586416897063717578345042,
0.562757134668604683339000099272694,
0.294392862701460198131126603103866
} ;
static const double w21a[5] = {
0.032558162307964727478818972459390,
0.075039674810919952767043140916190,
0.109387158802297641899210590325805,
0.134709217311473325928054001771707,
0.147739104901338491374841515972068
} ;
static const double w21b[6] = {
0.011694638867371874278064396062192,
0.054755896574351996031381300244580,
0.093125454583697605535065465083366,
0.123491976262065851077958109831074,
0.142775938577060080797094273138717,
0.149445554002916905664936468389821
} ;
static const double x3[11] = {
0.999333360901932081394099323919911,
0.987433402908088869795961478381209,
0.954807934814266299257919200290473,
0.900148695748328293625099494069092,
0.825198314983114150847066732588520,
0.732148388989304982612354848755461,
0.622847970537725238641159120344323,
0.499479574071056499952214885499755,
0.364901661346580768043989548502644,
0.222254919776601296498260928066212,
0.074650617461383322043914435796506
} ;
static const double w43a[10] = {
0.016296734289666564924281974617663,
0.037522876120869501461613795898115,
0.054694902058255442147212685465005,
0.067355414609478086075553166302174,
0.073870199632393953432140695251367,
0.005768556059769796184184327908655,
0.027371890593248842081276069289151,
0.046560826910428830743339154433824,
0.061744995201442564496240336030883,
0.071387267268693397768559114425516
} ;
static const double w43b[12] = {
0.001844477640212414100389106552965,
0.010798689585891651740465406741293,
0.021895363867795428102523123075149,
0.032597463975345689443882222526137,
0.042163137935191811847627924327955,
0.050741939600184577780189020092084,
0.058379395542619248375475369330206,
0.064746404951445885544689259517511,
0.069566197912356484528633315038405,
0.072824441471833208150939535192842,
0.074507751014175118273571813842889,
0.074722147517403005594425168280423
} ;
static const double x4[22] = {
0.999902977262729234490529830591582,
0.997989895986678745427496322365960,
0.992175497860687222808523352251425,
0.981358163572712773571916941623894,
0.965057623858384619128284110607926,
0.943167613133670596816416634507426,
0.915806414685507209591826430720050,
0.883221657771316501372117548744163,
0.845710748462415666605902011504855,
0.803557658035230982788739474980964,
0.757005730685495558328942793432020,
0.706273209787321819824094274740840,
0.651589466501177922534422205016736,
0.593223374057961088875273770349144,
0.531493605970831932285268948562671,
0.466763623042022844871966781659270,
0.399424847859218804732101665817923,
0.329874877106188288265053371824597,
0.258503559202161551802280975429025,
0.185695396568346652015917141167606,
0.111842213179907468172398359241362,
0.037352123394619870814998165437704
} ;
static const double w87a[21] = {
0.008148377384149172900002878448190,
0.018761438201562822243935059003794,
0.027347451050052286161582829741283,
0.033677707311637930046581056957588,
0.036935099820427907614589586742499,
0.002884872430211530501334156248695,
0.013685946022712701888950035273128,
0.023280413502888311123409291030404,
0.030872497611713358675466394126442,
0.035693633639418770719351355457044,
0.000915283345202241360843392549948,
0.005399280219300471367738743391053,
0.010947679601118931134327826856808,
0.016298731696787335262665703223280,
0.021081568889203835112433060188190,
0.025370969769253827243467999831710,
0.029189697756475752501446154084920,
0.032373202467202789685788194889595,
0.034783098950365142750781997949596,
0.036412220731351787562801163687577,
0.037253875503047708539592001191226
} ;
static const double w87b[23] = {
0.000274145563762072350016527092881,
0.001807124155057942948341311753254,
0.004096869282759164864458070683480,
0.006758290051847378699816577897424,
0.009549957672201646536053581325377,
0.012329447652244853694626639963780,
0.015010447346388952376697286041943,
0.017548967986243191099665352925900,
0.019938037786440888202278192730714,
0.022194935961012286796332102959499,
0.024339147126000805470360647041454,
0.026374505414839207241503786552615,
0.028286910788771200659968002987960,
0.030052581128092695322521110347341,
0.031646751371439929404586051078883,
0.033050413419978503290785944862689,
0.034255099704226061787082821046821,
0.035262412660156681033782717998428,
0.036076989622888701185500318003895,
0.036698604498456094498018047441094,
0.037120549269832576114119958413599,
0.037334228751935040321235449094698,
0.037361073762679023410321241766599
} ;
int
gsl_integration_qng (const gsl_function *f,
double a, double b,
double epsabs, double epsrel,
double * result, double * abserr, size_t * neval)
{
double fv1[5], fv2[5], fv3[5], fv4[5];
double savfun[21];
double res10, res21, res43, res87;
double result_kronrod, err ;
double resabs;
double resasc;
const double half_length = 0.5 * (b - a);
const double abs_half_length = fabs (half_length);
const double center = 0.5 * (b + a);
const double f_center = GSL_FN_EVAL(f, center);
int k ;
if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28))
{
* result = 0;
* abserr = 0;
* neval = 0;
GSL_ERROR ("tolerance cannot be acheived with given epsabs and epsrel",
GSL_EBADTOL);
};
res10 = 0;
res21 = w21b[5] * f_center;
resabs = w21b[5] * fabs (f_center);
for (k = 0; k < 5; k++)
{
const double abscissa = half_length * x1[k];
const double fval1 = GSL_FN_EVAL(f, center + abscissa);
const double fval2 = GSL_FN_EVAL(f, center - abscissa);
const double fval = fval1 + fval2;
res10 += w10[k] * fval;
res21 += w21a[k] * fval;
resabs += w21a[k] * (fabs (fval1) + fabs (fval2));
savfun[k] = fval;
fv1[k] = fval1;
fv2[k] = fval2;
}
for (k = 0; k < 5; k++)
{
const double abscissa = half_length * x2[k];
const double fval1 = GSL_FN_EVAL(f, center + abscissa);
const double fval2 = GSL_FN_EVAL(f, center - abscissa);
const double fval = fval1 + fval2;
res21 += w21b[k] * fval;
resabs += w21b[k] * (fabs (fval1) + fabs (fval2));
savfun[k + 5] = fval;
fv3[k] = fval1;
fv4[k] = fval2;
}
resabs *= abs_half_length ;
{
const double mean = 0.5 * res21;
resasc = w21b[5] * fabs (f_center - mean);
for (k = 0; k < 5; k++)
{
resasc +=
(w21a[k] * (fabs (fv1[k] - mean) + fabs (fv2[k] - mean))
+ w21b[k] * (fabs (fv3[k] - mean) + fabs (fv4[k] - mean)));
}
resasc *= abs_half_length ;
}
result_kronrod = res21 * half_length;
err = rescale_error ((res21 - res10) * half_length, resabs, resasc) ;
if (err < epsabs || err < epsrel * fabs (result_kronrod))
{
* result = result_kronrod ;
* abserr = err ;
* neval = 21;
return GSL_SUCCESS;
}
res43 = w43b[11] * f_center;
for (k = 0; k < 10; k++)
{
res43 += savfun[k] * w43a[k];
}
for (k = 0; k < 11; k++)
{
const double abscissa = half_length * x3[k];
const double fval = (GSL_FN_EVAL(f, center + abscissa)
+ GSL_FN_EVAL(f, center - abscissa));
res43 += fval * w43b[k];
savfun[k + 10] = fval;
}
result_kronrod = res43 * half_length;
err = rescale_error ((res43 - res21) * half_length, resabs, resasc);
if (err < epsabs || err < epsrel * fabs (result_kronrod))
{
* result = result_kronrod ;
* abserr = err ;
* neval = 43;
return GSL_SUCCESS;
}
res87 = w87b[22] * f_center;
for (k = 0; k < 21; k++)
{
res87 += savfun[k] * w87a[k];
}
for (k = 0; k < 22; k++)
{
const double abscissa = half_length * x4[k];
res87 += w87b[k] * (GSL_FN_EVAL(f, center + abscissa)
+ GSL_FN_EVAL(f, center - abscissa));
}
result_kronrod = res87 * half_length ;
err = rescale_error ((res87 - res43) * half_length, resabs, resasc);
if (err < epsabs || err < epsrel * fabs (result_kronrod))
{
* result = result_kronrod ;
* abserr = err ;
* neval = 87;
return GSL_SUCCESS;
}
* result = result_kronrod ;
* abserr = err ;
* neval = 87;
return GSL_ETOL ;
}
RooGaussKronrodIntegrator1D.cxx:1 RooGaussKronrodIntegrator1D.cxx:2 RooGaussKronrodIntegrator1D.cxx:3 RooGaussKronrodIntegrator1D.cxx:4 RooGaussKronrodIntegrator1D.cxx:5 RooGaussKronrodIntegrator1D.cxx:6 RooGaussKronrodIntegrator1D.cxx:7 RooGaussKronrodIntegrator1D.cxx:8 RooGaussKronrodIntegrator1D.cxx:9 RooGaussKronrodIntegrator1D.cxx:10 RooGaussKronrodIntegrator1D.cxx:11 RooGaussKronrodIntegrator1D.cxx:12 RooGaussKronrodIntegrator1D.cxx:13 RooGaussKronrodIntegrator1D.cxx:14 RooGaussKronrodIntegrator1D.cxx:15 RooGaussKronrodIntegrator1D.cxx:16 RooGaussKronrodIntegrator1D.cxx:17 RooGaussKronrodIntegrator1D.cxx:18 RooGaussKronrodIntegrator1D.cxx:19 RooGaussKronrodIntegrator1D.cxx:20 RooGaussKronrodIntegrator1D.cxx:21 RooGaussKronrodIntegrator1D.cxx:22 RooGaussKronrodIntegrator1D.cxx:23 RooGaussKronrodIntegrator1D.cxx:24 RooGaussKronrodIntegrator1D.cxx:25 RooGaussKronrodIntegrator1D.cxx:26 RooGaussKronrodIntegrator1D.cxx:27 RooGaussKronrodIntegrator1D.cxx:28 RooGaussKronrodIntegrator1D.cxx:29 RooGaussKronrodIntegrator1D.cxx:30 RooGaussKronrodIntegrator1D.cxx:31 RooGaussKronrodIntegrator1D.cxx:32 RooGaussKronrodIntegrator1D.cxx:33 RooGaussKronrodIntegrator1D.cxx:34 RooGaussKronrodIntegrator1D.cxx:35 RooGaussKronrodIntegrator1D.cxx:36 RooGaussKronrodIntegrator1D.cxx:37 RooGaussKronrodIntegrator1D.cxx:38 RooGaussKronrodIntegrator1D.cxx:39 RooGaussKronrodIntegrator1D.cxx:40 RooGaussKronrodIntegrator1D.cxx:41 RooGaussKronrodIntegrator1D.cxx:42 RooGaussKronrodIntegrator1D.cxx:43 RooGaussKronrodIntegrator1D.cxx:44 RooGaussKronrodIntegrator1D.cxx:45 RooGaussKronrodIntegrator1D.cxx:46 RooGaussKronrodIntegrator1D.cxx:47 RooGaussKronrodIntegrator1D.cxx:48 RooGaussKronrodIntegrator1D.cxx:49 RooGaussKronrodIntegrator1D.cxx:50 RooGaussKronrodIntegrator1D.cxx:51 RooGaussKronrodIntegrator1D.cxx:52 RooGaussKronrodIntegrator1D.cxx:53 RooGaussKronrodIntegrator1D.cxx:54 RooGaussKronrodIntegrator1D.cxx:55 RooGaussKronrodIntegrator1D.cxx:56 RooGaussKronrodIntegrator1D.cxx:57 RooGaussKronrodIntegrator1D.cxx:58 RooGaussKronrodIntegrator1D.cxx:59 RooGaussKronrodIntegrator1D.cxx:60 RooGaussKronrodIntegrator1D.cxx:61 RooGaussKronrodIntegrator1D.cxx:62 RooGaussKronrodIntegrator1D.cxx:63 RooGaussKronrodIntegrator1D.cxx:64 RooGaussKronrodIntegrator1D.cxx:65 RooGaussKronrodIntegrator1D.cxx:66 RooGaussKronrodIntegrator1D.cxx:67 RooGaussKronrodIntegrator1D.cxx:68 RooGaussKronrodIntegrator1D.cxx:69 RooGaussKronrodIntegrator1D.cxx:70 RooGaussKronrodIntegrator1D.cxx:71 RooGaussKronrodIntegrator1D.cxx:72 RooGaussKronrodIntegrator1D.cxx:73 RooGaussKronrodIntegrator1D.cxx:74 RooGaussKronrodIntegrator1D.cxx:75 RooGaussKronrodIntegrator1D.cxx:76 RooGaussKronrodIntegrator1D.cxx:77 RooGaussKronrodIntegrator1D.cxx:78 RooGaussKronrodIntegrator1D.cxx:79 RooGaussKronrodIntegrator1D.cxx:80 RooGaussKronrodIntegrator1D.cxx:81 RooGaussKronrodIntegrator1D.cxx:82 RooGaussKronrodIntegrator1D.cxx:83 RooGaussKronrodIntegrator1D.cxx:84 RooGaussKronrodIntegrator1D.cxx:85 RooGaussKronrodIntegrator1D.cxx:86 RooGaussKronrodIntegrator1D.cxx:87 RooGaussKronrodIntegrator1D.cxx:88 RooGaussKronrodIntegrator1D.cxx:89 RooGaussKronrodIntegrator1D.cxx:90 RooGaussKronrodIntegrator1D.cxx:91 RooGaussKronrodIntegrator1D.cxx:92 RooGaussKronrodIntegrator1D.cxx:93 RooGaussKronrodIntegrator1D.cxx:94 RooGaussKronrodIntegrator1D.cxx:95 RooGaussKronrodIntegrator1D.cxx:96 RooGaussKronrodIntegrator1D.cxx:97 RooGaussKronrodIntegrator1D.cxx:98 RooGaussKronrodIntegrator1D.cxx:99 RooGaussKronrodIntegrator1D.cxx:100 RooGaussKronrodIntegrator1D.cxx:101 RooGaussKronrodIntegrator1D.cxx:102 RooGaussKronrodIntegrator1D.cxx:103 RooGaussKronrodIntegrator1D.cxx:104 RooGaussKronrodIntegrator1D.cxx:105 RooGaussKronrodIntegrator1D.cxx:106 RooGaussKronrodIntegrator1D.cxx:107 RooGaussKronrodIntegrator1D.cxx:108 RooGaussKronrodIntegrator1D.cxx:109 RooGaussKronrodIntegrator1D.cxx:110 RooGaussKronrodIntegrator1D.cxx:111 RooGaussKronrodIntegrator1D.cxx:112 RooGaussKronrodIntegrator1D.cxx:113 RooGaussKronrodIntegrator1D.cxx:114 RooGaussKronrodIntegrator1D.cxx:115 RooGaussKronrodIntegrator1D.cxx:116 RooGaussKronrodIntegrator1D.cxx:117 RooGaussKronrodIntegrator1D.cxx:118 RooGaussKronrodIntegrator1D.cxx:119 RooGaussKronrodIntegrator1D.cxx:120 RooGaussKronrodIntegrator1D.cxx:121 RooGaussKronrodIntegrator1D.cxx:122 RooGaussKronrodIntegrator1D.cxx:123 RooGaussKronrodIntegrator1D.cxx:124 RooGaussKronrodIntegrator1D.cxx:125 RooGaussKronrodIntegrator1D.cxx:126 RooGaussKronrodIntegrator1D.cxx:127 RooGaussKronrodIntegrator1D.cxx:128 RooGaussKronrodIntegrator1D.cxx:129 RooGaussKronrodIntegrator1D.cxx:130 RooGaussKronrodIntegrator1D.cxx:131 RooGaussKronrodIntegrator1D.cxx:132 RooGaussKronrodIntegrator1D.cxx:133 RooGaussKronrodIntegrator1D.cxx:134 RooGaussKronrodIntegrator1D.cxx:135 RooGaussKronrodIntegrator1D.cxx:136 RooGaussKronrodIntegrator1D.cxx:137 RooGaussKronrodIntegrator1D.cxx:138 RooGaussKronrodIntegrator1D.cxx:139 RooGaussKronrodIntegrator1D.cxx:140 RooGaussKronrodIntegrator1D.cxx:141 RooGaussKronrodIntegrator1D.cxx:142 RooGaussKronrodIntegrator1D.cxx:143 RooGaussKronrodIntegrator1D.cxx:144 RooGaussKronrodIntegrator1D.cxx:145 RooGaussKronrodIntegrator1D.cxx:146 RooGaussKronrodIntegrator1D.cxx:147 RooGaussKronrodIntegrator1D.cxx:148 RooGaussKronrodIntegrator1D.cxx:149 RooGaussKronrodIntegrator1D.cxx:150 RooGaussKronrodIntegrator1D.cxx:151 RooGaussKronrodIntegrator1D.cxx:152 RooGaussKronrodIntegrator1D.cxx:153 RooGaussKronrodIntegrator1D.cxx:154 RooGaussKronrodIntegrator1D.cxx:155 RooGaussKronrodIntegrator1D.cxx:156 RooGaussKronrodIntegrator1D.cxx:157 RooGaussKronrodIntegrator1D.cxx:158 RooGaussKronrodIntegrator1D.cxx:159 RooGaussKronrodIntegrator1D.cxx:160 RooGaussKronrodIntegrator1D.cxx:161 RooGaussKronrodIntegrator1D.cxx:162 RooGaussKronrodIntegrator1D.cxx:163 RooGaussKronrodIntegrator1D.cxx:164 RooGaussKronrodIntegrator1D.cxx:165 RooGaussKronrodIntegrator1D.cxx:166 RooGaussKronrodIntegrator1D.cxx:167 RooGaussKronrodIntegrator1D.cxx:168 RooGaussKronrodIntegrator1D.cxx:169 RooGaussKronrodIntegrator1D.cxx:170 RooGaussKronrodIntegrator1D.cxx:171 RooGaussKronrodIntegrator1D.cxx:172 RooGaussKronrodIntegrator1D.cxx:173 RooGaussKronrodIntegrator1D.cxx:174 RooGaussKronrodIntegrator1D.cxx:175 RooGaussKronrodIntegrator1D.cxx:176 RooGaussKronrodIntegrator1D.cxx:177 RooGaussKronrodIntegrator1D.cxx:178 RooGaussKronrodIntegrator1D.cxx:179 RooGaussKronrodIntegrator1D.cxx:180 RooGaussKronrodIntegrator1D.cxx:181 RooGaussKronrodIntegrator1D.cxx:182 RooGaussKronrodIntegrator1D.cxx:183 RooGaussKronrodIntegrator1D.cxx:184 RooGaussKronrodIntegrator1D.cxx:185 RooGaussKronrodIntegrator1D.cxx:186 RooGaussKronrodIntegrator1D.cxx:187 RooGaussKronrodIntegrator1D.cxx:188 RooGaussKronrodIntegrator1D.cxx:189 RooGaussKronrodIntegrator1D.cxx:190 RooGaussKronrodIntegrator1D.cxx:191 RooGaussKronrodIntegrator1D.cxx:192 RooGaussKronrodIntegrator1D.cxx:193 RooGaussKronrodIntegrator1D.cxx:194 RooGaussKronrodIntegrator1D.cxx:195 RooGaussKronrodIntegrator1D.cxx:196 RooGaussKronrodIntegrator1D.cxx:197 RooGaussKronrodIntegrator1D.cxx:198 RooGaussKronrodIntegrator1D.cxx:199 RooGaussKronrodIntegrator1D.cxx:200 RooGaussKronrodIntegrator1D.cxx:201 RooGaussKronrodIntegrator1D.cxx:202 RooGaussKronrodIntegrator1D.cxx:203 RooGaussKronrodIntegrator1D.cxx:204 RooGaussKronrodIntegrator1D.cxx:205 RooGaussKronrodIntegrator1D.cxx:206 RooGaussKronrodIntegrator1D.cxx:207 RooGaussKronrodIntegrator1D.cxx:208 RooGaussKronrodIntegrator1D.cxx:209 RooGaussKronrodIntegrator1D.cxx:210 RooGaussKronrodIntegrator1D.cxx:211 RooGaussKronrodIntegrator1D.cxx:212 RooGaussKronrodIntegrator1D.cxx:213 RooGaussKronrodIntegrator1D.cxx:214 RooGaussKronrodIntegrator1D.cxx:215 RooGaussKronrodIntegrator1D.cxx:216 RooGaussKronrodIntegrator1D.cxx:217 RooGaussKronrodIntegrator1D.cxx:218 RooGaussKronrodIntegrator1D.cxx:219 RooGaussKronrodIntegrator1D.cxx:220 RooGaussKronrodIntegrator1D.cxx:221 RooGaussKronrodIntegrator1D.cxx:222 RooGaussKronrodIntegrator1D.cxx:223 RooGaussKronrodIntegrator1D.cxx:224 RooGaussKronrodIntegrator1D.cxx:225 RooGaussKronrodIntegrator1D.cxx:226 RooGaussKronrodIntegrator1D.cxx:227 RooGaussKronrodIntegrator1D.cxx:228 RooGaussKronrodIntegrator1D.cxx:229 RooGaussKronrodIntegrator1D.cxx:230 RooGaussKronrodIntegrator1D.cxx:231 RooGaussKronrodIntegrator1D.cxx:232 RooGaussKronrodIntegrator1D.cxx:233 RooGaussKronrodIntegrator1D.cxx:234 RooGaussKronrodIntegrator1D.cxx:235 RooGaussKronrodIntegrator1D.cxx:236 RooGaussKronrodIntegrator1D.cxx:237 RooGaussKronrodIntegrator1D.cxx:238 RooGaussKronrodIntegrator1D.cxx:239 RooGaussKronrodIntegrator1D.cxx:240 RooGaussKronrodIntegrator1D.cxx:241 RooGaussKronrodIntegrator1D.cxx:242 RooGaussKronrodIntegrator1D.cxx:243 RooGaussKronrodIntegrator1D.cxx:244 RooGaussKronrodIntegrator1D.cxx:245 RooGaussKronrodIntegrator1D.cxx:246 RooGaussKronrodIntegrator1D.cxx:247 RooGaussKronrodIntegrator1D.cxx:248 RooGaussKronrodIntegrator1D.cxx:249 RooGaussKronrodIntegrator1D.cxx:250 RooGaussKronrodIntegrator1D.cxx:251 RooGaussKronrodIntegrator1D.cxx:252 RooGaussKronrodIntegrator1D.cxx:253 RooGaussKronrodIntegrator1D.cxx:254 RooGaussKronrodIntegrator1D.cxx:255 RooGaussKronrodIntegrator1D.cxx:256 RooGaussKronrodIntegrator1D.cxx:257 RooGaussKronrodIntegrator1D.cxx:258 RooGaussKronrodIntegrator1D.cxx:259 RooGaussKronrodIntegrator1D.cxx:260 RooGaussKronrodIntegrator1D.cxx:261 RooGaussKronrodIntegrator1D.cxx:262 RooGaussKronrodIntegrator1D.cxx:263 RooGaussKronrodIntegrator1D.cxx:264 RooGaussKronrodIntegrator1D.cxx:265 RooGaussKronrodIntegrator1D.cxx:266 RooGaussKronrodIntegrator1D.cxx:267 RooGaussKronrodIntegrator1D.cxx:268 RooGaussKronrodIntegrator1D.cxx:269 RooGaussKronrodIntegrator1D.cxx:270 RooGaussKronrodIntegrator1D.cxx:271 RooGaussKronrodIntegrator1D.cxx:272 RooGaussKronrodIntegrator1D.cxx:273 RooGaussKronrodIntegrator1D.cxx:274 RooGaussKronrodIntegrator1D.cxx:275 RooGaussKronrodIntegrator1D.cxx:276 RooGaussKronrodIntegrator1D.cxx:277 RooGaussKronrodIntegrator1D.cxx:278 RooGaussKronrodIntegrator1D.cxx:279 RooGaussKronrodIntegrator1D.cxx:280 RooGaussKronrodIntegrator1D.cxx:281 RooGaussKronrodIntegrator1D.cxx:282 RooGaussKronrodIntegrator1D.cxx:283 RooGaussKronrodIntegrator1D.cxx:284 RooGaussKronrodIntegrator1D.cxx:285 RooGaussKronrodIntegrator1D.cxx:286 RooGaussKronrodIntegrator1D.cxx:287 RooGaussKronrodIntegrator1D.cxx:288 RooGaussKronrodIntegrator1D.cxx:289 RooGaussKronrodIntegrator1D.cxx:290 RooGaussKronrodIntegrator1D.cxx:291 RooGaussKronrodIntegrator1D.cxx:292 RooGaussKronrodIntegrator1D.cxx:293 RooGaussKronrodIntegrator1D.cxx:294 RooGaussKronrodIntegrator1D.cxx:295 RooGaussKronrodIntegrator1D.cxx:296 RooGaussKronrodIntegrator1D.cxx:297 RooGaussKronrodIntegrator1D.cxx:298 RooGaussKronrodIntegrator1D.cxx:299 RooGaussKronrodIntegrator1D.cxx:300 RooGaussKronrodIntegrator1D.cxx:301 RooGaussKronrodIntegrator1D.cxx:302 RooGaussKronrodIntegrator1D.cxx:303 RooGaussKronrodIntegrator1D.cxx:304 RooGaussKronrodIntegrator1D.cxx:305 RooGaussKronrodIntegrator1D.cxx:306 RooGaussKronrodIntegrator1D.cxx:307 RooGaussKronrodIntegrator1D.cxx:308 RooGaussKronrodIntegrator1D.cxx:309 RooGaussKronrodIntegrator1D.cxx:310 RooGaussKronrodIntegrator1D.cxx:311 RooGaussKronrodIntegrator1D.cxx:312 RooGaussKronrodIntegrator1D.cxx:313 RooGaussKronrodIntegrator1D.cxx:314 RooGaussKronrodIntegrator1D.cxx:315 RooGaussKronrodIntegrator1D.cxx:316 RooGaussKronrodIntegrator1D.cxx:317 RooGaussKronrodIntegrator1D.cxx:318 RooGaussKronrodIntegrator1D.cxx:319 RooGaussKronrodIntegrator1D.cxx:320 RooGaussKronrodIntegrator1D.cxx:321 RooGaussKronrodIntegrator1D.cxx:322 RooGaussKronrodIntegrator1D.cxx:323 RooGaussKronrodIntegrator1D.cxx:324 RooGaussKronrodIntegrator1D.cxx:325 RooGaussKronrodIntegrator1D.cxx:326 RooGaussKronrodIntegrator1D.cxx:327 RooGaussKronrodIntegrator1D.cxx:328 RooGaussKronrodIntegrator1D.cxx:329 RooGaussKronrodIntegrator1D.cxx:330 RooGaussKronrodIntegrator1D.cxx:331 RooGaussKronrodIntegrator1D.cxx:332 RooGaussKronrodIntegrator1D.cxx:333 RooGaussKronrodIntegrator1D.cxx:334 RooGaussKronrodIntegrator1D.cxx:335 RooGaussKronrodIntegrator1D.cxx:336 RooGaussKronrodIntegrator1D.cxx:337 RooGaussKronrodIntegrator1D.cxx:338 RooGaussKronrodIntegrator1D.cxx:339 RooGaussKronrodIntegrator1D.cxx:340 RooGaussKronrodIntegrator1D.cxx:341 RooGaussKronrodIntegrator1D.cxx:342 RooGaussKronrodIntegrator1D.cxx:343 RooGaussKronrodIntegrator1D.cxx:344 RooGaussKronrodIntegrator1D.cxx:345 RooGaussKronrodIntegrator1D.cxx:346 RooGaussKronrodIntegrator1D.cxx:347 RooGaussKronrodIntegrator1D.cxx:348 RooGaussKronrodIntegrator1D.cxx:349 RooGaussKronrodIntegrator1D.cxx:350 RooGaussKronrodIntegrator1D.cxx:351 RooGaussKronrodIntegrator1D.cxx:352 RooGaussKronrodIntegrator1D.cxx:353 RooGaussKronrodIntegrator1D.cxx:354 RooGaussKronrodIntegrator1D.cxx:355 RooGaussKronrodIntegrator1D.cxx:356 RooGaussKronrodIntegrator1D.cxx:357 RooGaussKronrodIntegrator1D.cxx:358 RooGaussKronrodIntegrator1D.cxx:359 RooGaussKronrodIntegrator1D.cxx:360 RooGaussKronrodIntegrator1D.cxx:361 RooGaussKronrodIntegrator1D.cxx:362 RooGaussKronrodIntegrator1D.cxx:363 RooGaussKronrodIntegrator1D.cxx:364 RooGaussKronrodIntegrator1D.cxx:365 RooGaussKronrodIntegrator1D.cxx:366 RooGaussKronrodIntegrator1D.cxx:367 RooGaussKronrodIntegrator1D.cxx:368 RooGaussKronrodIntegrator1D.cxx:369 RooGaussKronrodIntegrator1D.cxx:370 RooGaussKronrodIntegrator1D.cxx:371 RooGaussKronrodIntegrator1D.cxx:372 RooGaussKronrodIntegrator1D.cxx:373 RooGaussKronrodIntegrator1D.cxx:374 RooGaussKronrodIntegrator1D.cxx:375 RooGaussKronrodIntegrator1D.cxx:376 RooGaussKronrodIntegrator1D.cxx:377 RooGaussKronrodIntegrator1D.cxx:378 RooGaussKronrodIntegrator1D.cxx:379 RooGaussKronrodIntegrator1D.cxx:380 RooGaussKronrodIntegrator1D.cxx:381 RooGaussKronrodIntegrator1D.cxx:382 RooGaussKronrodIntegrator1D.cxx:383 RooGaussKronrodIntegrator1D.cxx:384 RooGaussKronrodIntegrator1D.cxx:385 RooGaussKronrodIntegrator1D.cxx:386 RooGaussKronrodIntegrator1D.cxx:387 RooGaussKronrodIntegrator1D.cxx:388 RooGaussKronrodIntegrator1D.cxx:389 RooGaussKronrodIntegrator1D.cxx:390 RooGaussKronrodIntegrator1D.cxx:391 RooGaussKronrodIntegrator1D.cxx:392 RooGaussKronrodIntegrator1D.cxx:393 RooGaussKronrodIntegrator1D.cxx:394 RooGaussKronrodIntegrator1D.cxx:395 RooGaussKronrodIntegrator1D.cxx:396 RooGaussKronrodIntegrator1D.cxx:397 RooGaussKronrodIntegrator1D.cxx:398 RooGaussKronrodIntegrator1D.cxx:399 RooGaussKronrodIntegrator1D.cxx:400 RooGaussKronrodIntegrator1D.cxx:401 RooGaussKronrodIntegrator1D.cxx:402 RooGaussKronrodIntegrator1D.cxx:403 RooGaussKronrodIntegrator1D.cxx:404 RooGaussKronrodIntegrator1D.cxx:405 RooGaussKronrodIntegrator1D.cxx:406 RooGaussKronrodIntegrator1D.cxx:407 RooGaussKronrodIntegrator1D.cxx:408 RooGaussKronrodIntegrator1D.cxx:409 RooGaussKronrodIntegrator1D.cxx:410 RooGaussKronrodIntegrator1D.cxx:411 RooGaussKronrodIntegrator1D.cxx:412 RooGaussKronrodIntegrator1D.cxx:413 RooGaussKronrodIntegrator1D.cxx:414 RooGaussKronrodIntegrator1D.cxx:415 RooGaussKronrodIntegrator1D.cxx:416 RooGaussKronrodIntegrator1D.cxx:417 RooGaussKronrodIntegrator1D.cxx:418 RooGaussKronrodIntegrator1D.cxx:419 RooGaussKronrodIntegrator1D.cxx:420 RooGaussKronrodIntegrator1D.cxx:421 RooGaussKronrodIntegrator1D.cxx:422 RooGaussKronrodIntegrator1D.cxx:423 RooGaussKronrodIntegrator1D.cxx:424 RooGaussKronrodIntegrator1D.cxx:425 RooGaussKronrodIntegrator1D.cxx:426 RooGaussKronrodIntegrator1D.cxx:427 RooGaussKronrodIntegrator1D.cxx:428 RooGaussKronrodIntegrator1D.cxx:429 RooGaussKronrodIntegrator1D.cxx:430 RooGaussKronrodIntegrator1D.cxx:431 RooGaussKronrodIntegrator1D.cxx:432 RooGaussKronrodIntegrator1D.cxx:433 RooGaussKronrodIntegrator1D.cxx:434 RooGaussKronrodIntegrator1D.cxx:435 RooGaussKronrodIntegrator1D.cxx:436 RooGaussKronrodIntegrator1D.cxx:437 RooGaussKronrodIntegrator1D.cxx:438 RooGaussKronrodIntegrator1D.cxx:439 RooGaussKronrodIntegrator1D.cxx:440 RooGaussKronrodIntegrator1D.cxx:441 RooGaussKronrodIntegrator1D.cxx:442 RooGaussKronrodIntegrator1D.cxx:443 RooGaussKronrodIntegrator1D.cxx:444 RooGaussKronrodIntegrator1D.cxx:445 RooGaussKronrodIntegrator1D.cxx:446 RooGaussKronrodIntegrator1D.cxx:447 RooGaussKronrodIntegrator1D.cxx:448 RooGaussKronrodIntegrator1D.cxx:449 RooGaussKronrodIntegrator1D.cxx:450 RooGaussKronrodIntegrator1D.cxx:451 RooGaussKronrodIntegrator1D.cxx:452 RooGaussKronrodIntegrator1D.cxx:453 RooGaussKronrodIntegrator1D.cxx:454 RooGaussKronrodIntegrator1D.cxx:455 RooGaussKronrodIntegrator1D.cxx:456 RooGaussKronrodIntegrator1D.cxx:457 RooGaussKronrodIntegrator1D.cxx:458 RooGaussKronrodIntegrator1D.cxx:459 RooGaussKronrodIntegrator1D.cxx:460 RooGaussKronrodIntegrator1D.cxx:461 RooGaussKronrodIntegrator1D.cxx:462 RooGaussKronrodIntegrator1D.cxx:463 RooGaussKronrodIntegrator1D.cxx:464 RooGaussKronrodIntegrator1D.cxx:465 RooGaussKronrodIntegrator1D.cxx:466 RooGaussKronrodIntegrator1D.cxx:467 RooGaussKronrodIntegrator1D.cxx:468 RooGaussKronrodIntegrator1D.cxx:469 RooGaussKronrodIntegrator1D.cxx:470 RooGaussKronrodIntegrator1D.cxx:471 RooGaussKronrodIntegrator1D.cxx:472 RooGaussKronrodIntegrator1D.cxx:473 RooGaussKronrodIntegrator1D.cxx:474 RooGaussKronrodIntegrator1D.cxx:475 RooGaussKronrodIntegrator1D.cxx:476 RooGaussKronrodIntegrator1D.cxx:477 RooGaussKronrodIntegrator1D.cxx:478 RooGaussKronrodIntegrator1D.cxx:479 RooGaussKronrodIntegrator1D.cxx:480 RooGaussKronrodIntegrator1D.cxx:481 RooGaussKronrodIntegrator1D.cxx:482 RooGaussKronrodIntegrator1D.cxx:483 RooGaussKronrodIntegrator1D.cxx:484 RooGaussKronrodIntegrator1D.cxx:485 RooGaussKronrodIntegrator1D.cxx:486 RooGaussKronrodIntegrator1D.cxx:487 RooGaussKronrodIntegrator1D.cxx:488 RooGaussKronrodIntegrator1D.cxx:489 RooGaussKronrodIntegrator1D.cxx:490 RooGaussKronrodIntegrator1D.cxx:491 RooGaussKronrodIntegrator1D.cxx:492 RooGaussKronrodIntegrator1D.cxx:493 RooGaussKronrodIntegrator1D.cxx:494 RooGaussKronrodIntegrator1D.cxx:495 RooGaussKronrodIntegrator1D.cxx:496 RooGaussKronrodIntegrator1D.cxx:497 RooGaussKronrodIntegrator1D.cxx:498 RooGaussKronrodIntegrator1D.cxx:499 RooGaussKronrodIntegrator1D.cxx:500 RooGaussKronrodIntegrator1D.cxx:501 RooGaussKronrodIntegrator1D.cxx:502 RooGaussKronrodIntegrator1D.cxx:503 RooGaussKronrodIntegrator1D.cxx:504 RooGaussKronrodIntegrator1D.cxx:505 RooGaussKronrodIntegrator1D.cxx:506 RooGaussKronrodIntegrator1D.cxx:507 RooGaussKronrodIntegrator1D.cxx:508 RooGaussKronrodIntegrator1D.cxx:509 RooGaussKronrodIntegrator1D.cxx:510 RooGaussKronrodIntegrator1D.cxx:511 RooGaussKronrodIntegrator1D.cxx:512 RooGaussKronrodIntegrator1D.cxx:513 RooGaussKronrodIntegrator1D.cxx:514 RooGaussKronrodIntegrator1D.cxx:515 RooGaussKronrodIntegrator1D.cxx:516 RooGaussKronrodIntegrator1D.cxx:517 RooGaussKronrodIntegrator1D.cxx:518 RooGaussKronrodIntegrator1D.cxx:519 RooGaussKronrodIntegrator1D.cxx:520 RooGaussKronrodIntegrator1D.cxx:521 RooGaussKronrodIntegrator1D.cxx:522 RooGaussKronrodIntegrator1D.cxx:523 RooGaussKronrodIntegrator1D.cxx:524 RooGaussKronrodIntegrator1D.cxx:525 RooGaussKronrodIntegrator1D.cxx:526 RooGaussKronrodIntegrator1D.cxx:527 RooGaussKronrodIntegrator1D.cxx:528 RooGaussKronrodIntegrator1D.cxx:529 RooGaussKronrodIntegrator1D.cxx:530 RooGaussKronrodIntegrator1D.cxx:531 RooGaussKronrodIntegrator1D.cxx:532 RooGaussKronrodIntegrator1D.cxx:533 RooGaussKronrodIntegrator1D.cxx:534 RooGaussKronrodIntegrator1D.cxx:535 RooGaussKronrodIntegrator1D.cxx:536 RooGaussKronrodIntegrator1D.cxx:537 RooGaussKronrodIntegrator1D.cxx:538 RooGaussKronrodIntegrator1D.cxx:539 RooGaussKronrodIntegrator1D.cxx:540 RooGaussKronrodIntegrator1D.cxx:541 RooGaussKronrodIntegrator1D.cxx:542 RooGaussKronrodIntegrator1D.cxx:543 RooGaussKronrodIntegrator1D.cxx:544 RooGaussKronrodIntegrator1D.cxx:545 RooGaussKronrodIntegrator1D.cxx:546 RooGaussKronrodIntegrator1D.cxx:547 RooGaussKronrodIntegrator1D.cxx:548 RooGaussKronrodIntegrator1D.cxx:549 RooGaussKronrodIntegrator1D.cxx:550 RooGaussKronrodIntegrator1D.cxx:551 RooGaussKronrodIntegrator1D.cxx:552 RooGaussKronrodIntegrator1D.cxx:553 RooGaussKronrodIntegrator1D.cxx:554 RooGaussKronrodIntegrator1D.cxx:555 RooGaussKronrodIntegrator1D.cxx:556 RooGaussKronrodIntegrator1D.cxx:557 RooGaussKronrodIntegrator1D.cxx:558 RooGaussKronrodIntegrator1D.cxx:559 RooGaussKronrodIntegrator1D.cxx:560 RooGaussKronrodIntegrator1D.cxx:561 RooGaussKronrodIntegrator1D.cxx:562 RooGaussKronrodIntegrator1D.cxx:563 RooGaussKronrodIntegrator1D.cxx:564 RooGaussKronrodIntegrator1D.cxx:565 RooGaussKronrodIntegrator1D.cxx:566 RooGaussKronrodIntegrator1D.cxx:567 RooGaussKronrodIntegrator1D.cxx:568 RooGaussKronrodIntegrator1D.cxx:569 RooGaussKronrodIntegrator1D.cxx:570 RooGaussKronrodIntegrator1D.cxx:571 RooGaussKronrodIntegrator1D.cxx:572 RooGaussKronrodIntegrator1D.cxx:573 RooGaussKronrodIntegrator1D.cxx:574 RooGaussKronrodIntegrator1D.cxx:575 RooGaussKronrodIntegrator1D.cxx:576 RooGaussKronrodIntegrator1D.cxx:577 RooGaussKronrodIntegrator1D.cxx:578 RooGaussKronrodIntegrator1D.cxx:579 RooGaussKronrodIntegrator1D.cxx:580 RooGaussKronrodIntegrator1D.cxx:581 RooGaussKronrodIntegrator1D.cxx:582 RooGaussKronrodIntegrator1D.cxx:583 RooGaussKronrodIntegrator1D.cxx:584 RooGaussKronrodIntegrator1D.cxx:585 RooGaussKronrodIntegrator1D.cxx:586 RooGaussKronrodIntegrator1D.cxx:587 RooGaussKronrodIntegrator1D.cxx:588 RooGaussKronrodIntegrator1D.cxx:589 RooGaussKronrodIntegrator1D.cxx:590 RooGaussKronrodIntegrator1D.cxx:591 RooGaussKronrodIntegrator1D.cxx:592 RooGaussKronrodIntegrator1D.cxx:593 RooGaussKronrodIntegrator1D.cxx:594 RooGaussKronrodIntegrator1D.cxx:595 RooGaussKronrodIntegrator1D.cxx:596 RooGaussKronrodIntegrator1D.cxx:597 RooGaussKronrodIntegrator1D.cxx:598 RooGaussKronrodIntegrator1D.cxx:599 RooGaussKronrodIntegrator1D.cxx:600 RooGaussKronrodIntegrator1D.cxx:601 RooGaussKronrodIntegrator1D.cxx:602 RooGaussKronrodIntegrator1D.cxx:603 RooGaussKronrodIntegrator1D.cxx:604 RooGaussKronrodIntegrator1D.cxx:605 RooGaussKronrodIntegrator1D.cxx:606 RooGaussKronrodIntegrator1D.cxx:607 RooGaussKronrodIntegrator1D.cxx:608 RooGaussKronrodIntegrator1D.cxx:609 RooGaussKronrodIntegrator1D.cxx:610 RooGaussKronrodIntegrator1D.cxx:611 RooGaussKronrodIntegrator1D.cxx:612 RooGaussKronrodIntegrator1D.cxx:613 RooGaussKronrodIntegrator1D.cxx:614 RooGaussKronrodIntegrator1D.cxx:615 RooGaussKronrodIntegrator1D.cxx:616 RooGaussKronrodIntegrator1D.cxx:617 RooGaussKronrodIntegrator1D.cxx:618 RooGaussKronrodIntegrator1D.cxx:619 RooGaussKronrodIntegrator1D.cxx:620 RooGaussKronrodIntegrator1D.cxx:621 RooGaussKronrodIntegrator1D.cxx:622 RooGaussKronrodIntegrator1D.cxx:623 RooGaussKronrodIntegrator1D.cxx:624 RooGaussKronrodIntegrator1D.cxx:625 RooGaussKronrodIntegrator1D.cxx:626 RooGaussKronrodIntegrator1D.cxx:627 RooGaussKronrodIntegrator1D.cxx:628 RooGaussKronrodIntegrator1D.cxx:629 RooGaussKronrodIntegrator1D.cxx:630 RooGaussKronrodIntegrator1D.cxx:631 RooGaussKronrodIntegrator1D.cxx:632 RooGaussKronrodIntegrator1D.cxx:633 RooGaussKronrodIntegrator1D.cxx:634 RooGaussKronrodIntegrator1D.cxx:635 RooGaussKronrodIntegrator1D.cxx:636 RooGaussKronrodIntegrator1D.cxx:637 RooGaussKronrodIntegrator1D.cxx:638 RooGaussKronrodIntegrator1D.cxx:639 RooGaussKronrodIntegrator1D.cxx:640 RooGaussKronrodIntegrator1D.cxx:641 RooGaussKronrodIntegrator1D.cxx:642 RooGaussKronrodIntegrator1D.cxx:643 RooGaussKronrodIntegrator1D.cxx:644 RooGaussKronrodIntegrator1D.cxx:645 RooGaussKronrodIntegrator1D.cxx:646 RooGaussKronrodIntegrator1D.cxx:647 RooGaussKronrodIntegrator1D.cxx:648 RooGaussKronrodIntegrator1D.cxx:649 RooGaussKronrodIntegrator1D.cxx:650 RooGaussKronrodIntegrator1D.cxx:651 RooGaussKronrodIntegrator1D.cxx:652 RooGaussKronrodIntegrator1D.cxx:653 RooGaussKronrodIntegrator1D.cxx:654 RooGaussKronrodIntegrator1D.cxx:655