/////////////////////////////////////////////////////////////////////////
//
// 'Neutrino Oscillation Example from Feldman & Cousins'
// author: Kyle Cranmer
// date March 2009
//
// This tutorial shows a more complex example using the FeldmanCousins utility
// to create a confidence interval for a toy neutrino oscillation experiment.
// The example attempts to faithfully reproduce the toy example described in Feldman & Cousins'
// original paper, Phys.Rev.D57:3873-3889,1998.
//
// to run it:
// .x tutorials/roostats/rs401d_FeldmanCousins.C+
/////////////////////////////////////////////////////////////////////////
#include "RooGlobalFunc.h"
#include "RooStats/ConfInterval.h"
#include "RooStats/FeldmanCousins.h"
#include "RooStats/ProfileLikelihoodCalculator.h"
#include "RooStats/MCMCCalculator.h"
#include "RooStats/UniformProposal.h"
#include "RooStats/LikelihoodIntervalPlot.h"
#include "RooStats/MCMCIntervalPlot.h"
#include "RooStats/MCMCInterval.h"
#include "RooDataSet.h"
#include "RooDataHist.h"
#include "RooRealVar.h"
#include "RooConstVar.h"
#include "RooAddition.h"
#include "RooProduct.h"
#include "RooProdPdf.h"
#include "RooAddPdf.h"
#include "TROOT.h"
#include "RooPolynomial.h"
#include "RooRandom.h"
#include "RooNLLVar.h"
#include "RooProfileLL.h"
#include "RooPlot.h"
#include "TCanvas.h"
#include "TH1F.h"
#include "TH2F.h"
#include "TTree.h"
#include "TMarker.h"
#include "TStopwatch.h"
#include <iostream>
// PDF class created for this macro
#if !defined(__CINT__) || defined(__MAKECINT__)
#include "../tutorials/roostats/NuMuToNuE_Oscillation.h"
#include "../tutorials/roostats/NuMuToNuE_Oscillation.cxx" // so that it can be executed directly
#else
#include "../tutorials/roostats/NuMuToNuE_Oscillation.cxx+" // so that it can be executed directly
#endif
// use this order for safety on library loading
using namespace RooFit ;
using namespace RooStats ;
void rs401d_FeldmanCousins(bool doFeldmanCousins=false, bool doMCMC = true)
{
// to time the macro
TStopwatch t;
t.Start();
/*
Taken from Feldman & Cousins paper, Phys.Rev.D57:3873-3889,1998.
e-Print: physics/9711021 (see page 13.)
Quantum mechanics dictates that the probability of such a transformation is given by the formula
P (νµ → ν e ) = sin^2 (2θ) sin^2 (1.27 ∆m^2 L /E )
where P is the probability for a νµ to transform into a νe , L is the distance in km between
the creation of the neutrino from meson decay and its interaction in the detector, E is the
neutrino energy in GeV, and ∆m^2 = |m^2− m^2 | in (eV/c^2 )^2 .
To demonstrate how this works in practice, and how it compares to alternative approaches
that have been used, we consider a toy model of a typical neutrino oscillation experiment.
The toy model is defined by the following parameters: Mesons are assumed to decay to
neutrinos uniformly in a region 600 m to 1000 m from the detector. The expected background
from conventional νe interactions and misidentified νµ interactions is assumed to be 100
events in each of 5 energy bins which span the region from 10 to 60 GeV. We assume that
the νµ flux is such that if P (νµ → ν e ) = 0.01 averaged over any bin, then that bin would
have an expected additional contribution of 100 events due to νµ → ν e oscillations.
*/
// Make signal model model
RooRealVar E("E","", 15,10,60,"GeV");
RooRealVar L("L","", .800,.600, 1.0,"km"); // need these units in formula
RooRealVar deltaMSq("deltaMSq","#Delta m^{2}",40,1,300,"eV/c^{2}");
RooRealVar sinSq2theta("sinSq2theta","sin^{2}(2#theta)", .006,.0,.02);
//RooRealVar deltaMSq("deltaMSq","#Delta m^{2}",40,20,70,"eV/c^{2}");
// RooRealVar sinSq2theta("sinSq2theta","sin^{2}(2#theta)", .006,.001,.01);
// PDF for oscillation only describes deltaMSq dependence, sinSq2theta goes into sigNorm
// 1) The code for this PDF was created by issuing these commands
// root [0] RooClassFactory x
// root [1] x.makePdf("NuMuToNuE_Oscillation","L,E,deltaMSq","","pow(sin(1.27*deltaMSq*L/E),2)")
NuMuToNuE_Oscillation PnmuTone("PnmuTone","P(#nu_{#mu} #rightarrow #nu_{e}",L,E,deltaMSq);
// only E is observable, so create the signal model by integrating out L
RooAbsPdf* sigModel = PnmuTone.createProjection(L);
// create \int dE' dL' P(E',L' | \Delta m^2).
// Given RooFit will renormalize the PDF in the range of the observables,
// the average probability to oscillate in the experiment's acceptance
// needs to be incorporated into the extended term in the likelihood.
// Do this by creating a RooAbsReal representing the integral and divide by
// the area in the E-L plane.
// The integral should be over "primed" observables, so we need
// an independent copy of PnmuTone not to interfere with the original.
// Independent copy for Integral
RooRealVar EPrime("EPrime","", 15,10,60,"GeV");
RooRealVar LPrime("LPrime","", .800,.600, 1.0,"km"); // need these units in formula
NuMuToNuE_Oscillation PnmuTonePrime("PnmuTonePrime","P(#nu_{#mu} #rightarrow #nu_{e}",
LPrime,EPrime,deltaMSq);
RooAbsReal* intProbToOscInExp = PnmuTonePrime.createIntegral(RooArgSet(EPrime,LPrime));
// Getting the flux is a bit tricky. It is more celear to include a cross section term that is not
// explicitly refered to in the text, eg.
// # events in bin = flux * cross-section for nu_e interaction in E bin * average prob nu_mu osc. to nu_e in bin
// let maxEventsInBin = flux * cross-section for nu_e interaction in E bin
// maxEventsInBin * 1% chance per bin = 100 events / bin
// therefore maxEventsInBin = 10,000.
// for 5 bins, this means maxEventsTot = 50,000
RooConstVar maxEventsTot("maxEventsTot","maximum number of sinal events",50000);
RooConstVar inverseArea("inverseArea","1/(#Delta E #Delta L)",
1./(EPrime.getMax()-EPrime.getMin())/(LPrime.getMax()-LPrime.getMin()));
// sigNorm = maxEventsTot * (\int dE dL prob to oscillate in experiment / Area) * sin^2(2\theta)
RooProduct sigNorm("sigNorm", "", RooArgSet(maxEventsTot, *intProbToOscInExp, inverseArea, sinSq2theta));
// bkg = 5 bins * 100 events / bin
RooConstVar bkgNorm("bkgNorm","normalization for background",500);
// flat background (0th order polynomial, so no arguments for coefficients)
RooPolynomial bkgEShape("bkgEShape","flat bkg shape", E);
// total model
RooAddPdf model("model","",RooArgList(*sigModel,bkgEShape),
RooArgList(sigNorm,bkgNorm));
// for debugging, check model tree
// model.printCompactTree();
// model.graphVizTree("model.dot");
// turn off some messages
RooMsgService::instance().setStreamStatus(0,kFALSE);
RooMsgService::instance().setStreamStatus(1,kFALSE);
RooMsgService::instance().setStreamStatus(2,kFALSE);
//////////////////////////////////////////////
// n events in data to data, simply sum of sig+bkg
Int_t nEventsData = bkgNorm.getVal()+sigNorm.getVal();
cout << "generate toy data with nEvents = " << nEventsData << endl;
// adjust random seed to get a toy dataset similar to one in paper.
// Found by trial and error (3 trials, so not very "fine tuned")
RooRandom::randomGenerator()->SetSeed(3);
// create a toy dataset
RooDataSet* data = model.generate(RooArgSet(E), nEventsData);
/////////////////////////////////////////////
// make some plots
TCanvas* dataCanvas = new TCanvas("dataCanvas");
dataCanvas->Divide(2,2);
// plot the PDF
dataCanvas->cd(1);
TH1* hh = PnmuTone.createHistogram("hh",E,Binning(40),YVar(L,Binning(40)),Scaling(kFALSE)) ;
hh->SetLineColor(kBlue) ;
hh->SetTitle("True Signal Model");
hh->Draw("surf");
// plot the data with the best fit
dataCanvas->cd(2);
RooPlot* Eframe = E.frame();
data->plotOn(Eframe);
model.fitTo(*data, Extended());
model.plotOn(Eframe);
model.plotOn(Eframe,Components(*sigModel),LineColor(kRed));
model.plotOn(Eframe,Components(bkgEShape),LineColor(kGreen));
model.plotOn(Eframe);
Eframe->SetTitle("toy data with best fit model (and sig+bkg components)");
Eframe->Draw();
// plot the likelihood function
dataCanvas->cd(3);
RooNLLVar nll("nll", "nll", model, *data, Extended());
RooProfileLL pll("pll", "", nll, RooArgSet(deltaMSq, sinSq2theta));
// TH1* hhh = nll.createHistogram("hhh",sinSq2theta,Binning(40),YVar(deltaMSq,Binning(40))) ;
TH1* hhh = pll.createHistogram("hhh",sinSq2theta,Binning(40),YVar(deltaMSq,Binning(40)),Scaling(kFALSE)) ;
hhh->SetLineColor(kBlue) ;
hhh->SetTitle("Likelihood Function");
hhh->Draw("surf");
dataCanvas->Update();
//////////////////////////////////////////////////////////
//////// show use of Feldman-Cousins utility in RooStats
// set the distribution creator, which encodes the test statistic
RooArgSet parameters(deltaMSq, sinSq2theta);
RooWorkspace* w = new RooWorkspace();
ModelConfig modelConfig;
modelConfig.SetWorkspace(*w);
modelConfig.SetPdf(model);
modelConfig.SetParametersOfInterest(parameters);
RooStats::FeldmanCousins fc(*data, modelConfig);
fc.SetTestSize(.1); // set size of test
fc.UseAdaptiveSampling(true);
fc.SetNBins(10); // number of points to test per parameter
// use the Feldman-Cousins tool
ConfInterval* interval = 0;
if(doFeldmanCousins)
interval = fc.GetInterval();
///////////////////////////////////////////////////////////////////
///////// show use of ProfileLikeihoodCalculator utility in RooStats
RooStats::ProfileLikelihoodCalculator plc(*data, modelConfig);
plc.SetTestSize(.1);
ConfInterval* plcInterval = plc.GetInterval();
///////////////////////////////////////////////////////////////////
///////// show use of MCMCCalculator utility in RooStats
MCMCInterval* mcInt = NULL;
if (doMCMC) {
// turn some messages back on
RooMsgService::instance().setStreamStatus(0,kTRUE);
RooMsgService::instance().setStreamStatus(1,kTRUE);
TStopwatch mcmcWatch;
mcmcWatch.Start();
RooArgList axisList(deltaMSq, sinSq2theta);
MCMCCalculator mc(*data, modelConfig);
mc.SetNumIters(5000);
mc.SetNumBurnInSteps(100);
mc.SetUseKeys(true);
mc.SetTestSize(.1);
mc.SetAxes(axisList); // set which is x and y axis in posterior histogram
//mc.SetNumBins(50);
mcInt = (MCMCInterval*)mc.GetInterval();
mcmcWatch.Stop();
mcmcWatch.Print();
}
////////////////////////////////////////////
// make plot of resulting interval
dataCanvas->cd(4);
// first plot a small dot for every point tested
if (doFeldmanCousins) {
RooDataHist* parameterScan = (RooDataHist*) fc.GetPointsToScan();
TH2F* hist = (TH2F*) parameterScan->createHistogram("sinSq2theta:deltaMSq",30,30);
// hist->Draw();
TH2F* forContour = (TH2F*)hist->Clone();
// now loop through the points and put a marker if it's in the interval
RooArgSet* tmpPoint;
// loop over points to test
for(Int_t i=0; i<parameterScan->numEntries(); ++i){
// get a parameter point from the list of points to test.
tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp");
if (interval){
if (interval->IsInInterval( *tmpPoint ) ) {
forContour->SetBinContent( hist->FindBin(tmpPoint->getRealValue("sinSq2theta"),
tmpPoint->getRealValue("deltaMSq")), 1);
}else{
forContour->SetBinContent( hist->FindBin(tmpPoint->getRealValue("sinSq2theta"),
tmpPoint->getRealValue("deltaMSq")), 0);
}
}
delete tmpPoint;
}
if (interval){
Double_t level=0.5;
forContour->SetContour(1,&level);
forContour->SetLineWidth(2);
forContour->SetLineColor(kRed);
forContour->Draw("cont2,same");
}
}
MCMCIntervalPlot* mcPlot = NULL;
if (mcInt) {
cout << "MCMC actual confidence level: "
<< mcInt->GetActualConfidenceLevel() << endl;
mcPlot = new MCMCIntervalPlot(*mcInt);
mcPlot->SetLineColor(kMagenta);
mcPlot->Draw();
}
dataCanvas->Update();
LikelihoodIntervalPlot plotInt((LikelihoodInterval*)plcInterval);
plotInt.SetTitle("90% Confidence Intervals");
if (mcInt)
plotInt.Draw("same");
else
plotInt.Draw();
dataCanvas->Update();
/// print timing info
t.Stop();
t.Print();
}