/////////////////////////////////////////////////////////////////////////
//
// 'Limit Example' RooStats tutorial macro #101
// author: Kyle Cranmer
// date June. 2009
//
// This tutorial shows an example of creating a simple
// model for a number counting experiment with uncertainty
// on both the background rate and signal efficeincy. We then
// use a Confidence Interval Calculator to set a limit on the signal.
//
//
/////////////////////////////////////////////////////////////////////////
// force compilation with ACLIC for an unknown error in RooStats::GetAsTTree in CINT
#if defined(__CINT__) && !defined(__MAKECINT__)
{
TString macroFileName = gSystem->UnixPathName(gInterpreter->GetCurrentMacroName());
gSystem->CompileMacro(macroFileName, "k");
rs101_limitexample();
}
#else
#ifndef __CINT__
#include "RooGlobalFunc.h"
#endif
#include "RooProfileLL.h"
#include "RooAbsPdf.h"
#include "RooStats/HypoTestResult.h"
#include "RooRealVar.h"
#include "RooPlot.h"
#include "RooDataSet.h"
#include "RooTreeDataStore.h"
#include "TTree.h"
#include "TCanvas.h"
#include "TLine.h"
#include "TStopwatch.h"
#include "RooStats/ProfileLikelihoodCalculator.h"
#include "RooStats/MCMCCalculator.h"
#include "RooStats/UniformProposal.h"
#include "RooStats/FeldmanCousins.h"
#include "RooStats/NumberCountingPdfFactory.h"
#include "RooStats/ConfInterval.h"
#include "RooStats/PointSetInterval.h"
#include "RooStats/LikelihoodInterval.h"
#include "RooStats/LikelihoodIntervalPlot.h"
#include "RooStats/RooStatsUtils.h"
#include "RooStats/ModelConfig.h"
#include "RooStats/MCMCInterval.h"
#include "RooStats/MCMCIntervalPlot.h"
#include "RooStats/ProposalFunction.h"
#include "RooStats/ProposalHelper.h"
#include "RooFitResult.h"
#include "TGraph2D.h"
// use this order for safety on library loading
using namespace RooFit ;
using namespace RooStats ;
void rs101_limitexample()
{
/////////////////////////////////////////
// An example of setting a limit in a number counting experiment with uncertainty on background and signal
/////////////////////////////////////////
// to time the macro
TStopwatch t;
t.Start();
/////////////////////////////////////////
// The Model building stage
/////////////////////////////////////////
RooWorkspace* wspace = new RooWorkspace();
wspace->factory("Poisson::countingModel(obs[150,0,300], sum(s[50,0,120]*ratioSigEff[1.,0,2.],b[100,0,300]*ratioBkgEff[1.,0.,2.]))"); // counting model
// wspace->factory("Gaussian::sigConstraint(ratioSigEff,1,0.05)"); // 5% signal efficiency uncertainty
// wspace->factory("Gaussian::bkgConstraint(ratioBkgEff,1,0.1)"); // 10% background efficiency uncertainty
wspace->factory("Gaussian::sigConstraint(1,ratioSigEff,0.05)"); // 5% signal efficiency uncertainty
wspace->factory("Gaussian::bkgConstraint(1,ratioBkgEff,0.1)"); // 10% background efficiency uncertainty
wspace->factory("PROD::modelWithConstraints(countingModel,sigConstraint,bkgConstraint)"); // product of terms
wspace->Print();
RooAbsPdf* modelWithConstraints = wspace->pdf("modelWithConstraints"); // get the model
RooRealVar* obs = wspace->var("obs"); // get the observable
RooRealVar* s = wspace->var("s"); // get the signal we care about
RooRealVar* b = wspace->var("b"); // get the background and set it to a constant. Uncertainty included in ratioBkgEff
b->setConstant();
RooRealVar* ratioSigEff = wspace->var("ratioSigEff"); // get uncertaint parameter to constrain
RooRealVar* ratioBkgEff = wspace->var("ratioBkgEff"); // get uncertaint parameter to constrain
RooArgSet constrainedParams(*ratioSigEff, *ratioBkgEff); // need to constrain these in the fit (should change default behavior)
// Create an example dataset with 160 observed events
obs->setVal(160.);
RooDataSet* data = new RooDataSet("exampleData", "exampleData", RooArgSet(*obs));
data->add(*obs);
RooArgSet all(*s, *ratioBkgEff, *ratioSigEff);
// not necessary
modelWithConstraints->fitTo(*data, RooFit::Constrain(RooArgSet(*ratioSigEff, *ratioBkgEff)));
// Now let's make some confidence intervals for s, our parameter of interest
RooArgSet paramOfInterest(*s);
ModelConfig modelConfig(new RooWorkspace());
modelConfig.SetPdf(*modelWithConstraints);
modelConfig.SetParametersOfInterest(paramOfInterest);
// First, let's use a Calculator based on the Profile Likelihood Ratio
//ProfileLikelihoodCalculator plc(*data, *modelWithConstraints, paramOfInterest);
ProfileLikelihoodCalculator plc(*data, modelConfig);
plc.SetTestSize(.05);
ConfInterval* lrint = plc.GetInterval(); // that was easy.
// Let's make a plot
TCanvas* dataCanvas = new TCanvas("dataCanvas");
dataCanvas->Divide(2,1);
dataCanvas->cd(1);
LikelihoodIntervalPlot plotInt((LikelihoodInterval*)lrint);
plotInt.SetTitle("Profile Likelihood Ratio and Posterior for S");
plotInt.Draw();
// Second, use a Calculator based on the Feldman Cousins technique
FeldmanCousins fc(*data, modelConfig);
fc.UseAdaptiveSampling(true);
fc.FluctuateNumDataEntries(false); // number counting analysis: dataset always has 1 entry with N events observed
fc.SetNBins(30); // number of points to test per parameter
fc.SetTestSize(.05);
// fc.SaveBeltToFile(true); // optional
ConfInterval* fcint = NULL;
fcint = fc.GetInterval(); // that was easy.
RooFitResult* fit = modelWithConstraints->fitTo(*data, Save(true));
// Third, use a Calculator based on Markov Chain monte carlo
// Before configuring the calculator, let's make a ProposalFunction
// that will achieve a high acceptance rate
ProposalHelper ph;
ph.SetVariables((RooArgSet&)fit->floatParsFinal());
ph.SetCovMatrix(fit->covarianceMatrix());
ph.SetUpdateProposalParameters(true);
ph.SetCacheSize(100);
ProposalFunction* pdfProp = ph.GetProposalFunction(); // that was easy
MCMCCalculator mc(*data, modelConfig);
mc.SetNumIters(20000); // steps to propose in the chain
mc.SetTestSize(.05); // 95% CL
mc.SetNumBurnInSteps(40); // ignore first N steps in chain as "burn in"
mc.SetProposalFunction(*pdfProp);
mc.SetLeftSideTailFraction(0.5); // find a "central" interval
MCMCInterval* mcInt = (MCMCInterval*)mc.GetInterval(); // that was easy
// Get Lower and Upper limits from Profile Calculator
cout << "Profile lower limit on s = " << ((LikelihoodInterval*) lrint)->LowerLimit(*s) << endl;
cout << "Profile upper limit on s = " << ((LikelihoodInterval*) lrint)->UpperLimit(*s) << endl;
// Get Lower and Upper limits from FeldmanCousins with profile construction
if (fcint != NULL) {
double fcul = ((PointSetInterval*) fcint)->UpperLimit(*s);
double fcll = ((PointSetInterval*) fcint)->LowerLimit(*s);
cout << "FC lower limit on s = " << fcll << endl;
cout << "FC upper limit on s = " << fcul << endl;
TLine* fcllLine = new TLine(fcll, 0, fcll, 1);
TLine* fculLine = new TLine(fcul, 0, fcul, 1);
fcllLine->SetLineColor(kRed);
fculLine->SetLineColor(kRed);
fcllLine->Draw("same");
fculLine->Draw("same");
dataCanvas->Update();
}
// Plot MCMC interval and print some statistics
MCMCIntervalPlot mcPlot(*mcInt);
mcPlot.SetLineColor(kMagenta);
mcPlot.SetLineWidth(2);
mcPlot.Draw("same");
double mcul = mcInt->UpperLimit(*s);
double mcll = mcInt->LowerLimit(*s);
cout << "MCMC lower limit on s = " << mcll << endl;
cout << "MCMC upper limit on s = " << mcul << endl;
cout << "MCMC Actual confidence level: "
<< mcInt->GetActualConfidenceLevel() << endl;
// 3-d plot of the parameter points
dataCanvas->cd(2);
// also plot the points in the markov chain
RooDataSet * chainData = mcInt->GetChainAsDataSet();
assert(chainData);
std::cout << "plotting the chain data - nentries = " << chainData->numEntries() << std::endl;
TTree* chain = RooStats::GetAsTTree("chainTreeData","chainTreeData",*chainData);
assert(chain);
chain->SetMarkerStyle(6);
chain->SetMarkerColor(kRed);
chain->Draw("s:ratioSigEff:ratioBkgEff","nll_MarkovChain_local_","box"); // 3-d box proporional to posterior
// the points used in the profile construction
RooDataSet * parScanData = (RooDataSet*) fc.GetPointsToScan();
assert(parScanData);
std::cout << "plotting the scanned points used in the frequentist construction - npoints = " << parScanData->numEntries() << std::endl;
// getting the tree and drawing it -crashes (very strange....);
// TTree* parameterScan = RooStats::GetAsTTree("parScanTreeData","parScanTreeData",*parScanData);
// assert(parameterScan);
// parameterScan->Draw("s:ratioSigEff:ratioBkgEff","","candle goff");
TGraph2D *gr = new TGraph2D(parScanData->numEntries());
for (int ievt = 0; ievt < parScanData->numEntries(); ++ievt) {
const RooArgSet * evt = parScanData->get(ievt);
double x = evt->getRealValue("ratioBkgEff");
double y = evt->getRealValue("ratioSigEff");
double z = evt->getRealValue("s");
gr->SetPoint(ievt, x,y,z);
// std::cout << ievt << " " << x << " " << y << " " << z << std::endl;
}
gr->SetMarkerStyle(24);
gr->Draw("P SAME");
delete wspace;
delete lrint;
delete mcInt;
delete fcint;
delete data;
/// print timing info
t.Stop();
t.Print();
}
#endif