/////////////////////////////////////////////////////////////////////////
//
// 'ORGANIZATION AND SIMULTANEOUS FITS' RooFit tutorial macro #509
//
// Easy CINT interactive access to workspace contents through a
// 'C++' namespace in CINT that maps the workspace contents in a typesafe way
//
// *********************************************************************************
// *** NB: This macro exploits a feature native to CINT and _cannot_ be compiled ***
// *********************************************************************************
//
// 04/2009 - Wouter Verkerke
//
/////////////////////////////////////////////////////////////////////////
#ifndef __CINT__
#include "RooGlobalFunc.h"
#endif
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooGaussian.h"
#include "RooConstVar.h"
#include "RooChebychev.h"
#include "RooAddPdf.h"
#include "RooWorkspace.h"
#include "RooPlot.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "TFile.h"
#include "TH1.h"
using namespace RooFit ;
void fillWorkspace(RooWorkspace& w) ;
void rf509_wsinteractive()
{
// C r e a t e a n d f i l l w o r k s p a c e
// ------------------------------------------------
// Create a workspace named 'w' that exports its contents to
// a same-name C++ namespace in CINT 'namespace w'.
RooWorkspace* w = new RooWorkspace("w",kTRUE) ;
// Fill workspace with p.d.f. and data in a separate function
fillWorkspace(*w) ;
// Print workspace contents
w->Print() ;
// U s e w o r k s p a c e c o n t e n t s t h r o u g h C I N T C + + n a m e s p a c e
// -------------------------------------------------------------------------------------------------
// Use the name space prefix operator to access the workspace contents
RooDataSet* d = w::model.generate(w::x,1000) ;
RooFitResult* r = w::model.fitTo(*d) ;
RooPlot* frame = w::x.frame() ;
d->plotOn(frame) ;
// NB: The 'w::' prefix can be omitted if namespace w is imported in local namespace
// in the usual C++ way
using namespace w;
model.plotOn(frame) ;
model.plotOn(frame,Components(bkg),LineStyle(kDashed)) ;
// Draw the frame on the canvas
new TCanvas("rf509_wsinteractive","rf509_wsinteractive",600,600) ;
gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.4) ; frame->Draw() ;
}
void fillWorkspace(RooWorkspace& w)
{
// C r e a t e p d f a n d f i l l w o r k s p a c e
// --------------------------------------------------------
// Declare observable x
RooRealVar x("x","x",0,10) ;
// Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters
RooRealVar mean("mean","mean of gaussians",5,0,10) ;
RooRealVar sigma1("sigma1","width of gaussians",0.5) ;
RooRealVar sigma2("sigma2","width of gaussians",1) ;
RooGaussian sig1("sig1","Signal component 1",x,mean,sigma1) ;
RooGaussian sig2("sig2","Signal component 2",x,mean,sigma2) ;
// Build Chebychev polynomial p.d.f.
RooRealVar a0("a0","a0",0.5,0.,1.) ;
RooRealVar a1("a1","a1",-0.2,0.,1.) ;
RooChebychev bkg("bkg","Background",x,RooArgSet(a0,a1)) ;
// Sum the signal components into a composite signal p.d.f.
RooRealVar sig1frac("sig1frac","fraction of component 1 in signal",0.8,0.,1.) ;
RooAddPdf sig("sig","Signal",RooArgList(sig1,sig2),sig1frac) ;
// Sum the composite signal and background
RooRealVar bkgfrac("bkgfrac","fraction of background",0.5,0.,1.) ;
RooAddPdf model("model","g1+g2+a",RooArgList(bkg,sig),bkgfrac) ;
w.import(model) ;
}