//////////////////////////////////////////////////////////////////////////
//
// 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #316
//
// Using the likelihood ratio techique to construct a signal enhanced
// one-dimensional projection of a multi-dimensional p.d.f.
//
//
//
// 07/2008 - Wouter Verkerke
//
/////////////////////////////////////////////////////////////////////////
#ifndef __CINT__
#include "RooGlobalFunc.h"
#endif
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooGaussian.h"
#include "RooConstVar.h"
#include "RooPolynomial.h"
#include "RooAddPdf.h"
#include "RooProdPdf.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "RooPlot.h"
using namespace RooFit ;
void rf316_llratioplot()
{
// C r e a t e 3 D p d f a n d d a t a
// -------------------------------------------
// Create observables
RooRealVar x("x","x",-5,5) ;
RooRealVar y("y","y",-5,5) ;
RooRealVar z("z","z",-5,5) ;
// Create signal pdf gauss(x)*gauss(y)*gauss(z)
RooGaussian gx("gx","gx",x,RooConst(0),RooConst(1)) ;
RooGaussian gy("gy","gy",y,RooConst(0),RooConst(1)) ;
RooGaussian gz("gz","gz",z,RooConst(0),RooConst(1)) ;
RooProdPdf sig("sig","sig",RooArgSet(gx,gy,gz)) ;
// Create background pdf poly(x)*poly(y)*poly(z)
RooPolynomial px("px","px",x,RooArgSet(RooConst(-0.1),RooConst(0.004))) ;
RooPolynomial py("py","py",y,RooArgSet(RooConst(0.1),RooConst(-0.004))) ;
RooPolynomial pz("pz","pz",z) ;
RooProdPdf bkg("bkg","bkg",RooArgSet(px,py,pz)) ;
// Create composite pdf sig+bkg
RooRealVar fsig("fsig","signal fraction",0.1,0.,1.) ;
RooAddPdf model("model","model",RooArgList(sig,bkg),fsig) ;
RooDataSet* data = model.generate(RooArgSet(x,y,z),20000) ;
// P r o j e c t p d f a n d d a t a o n x
// -------------------------------------------------
// Make plain projection of data and pdf on x observable
RooPlot* frame = x.frame(Title("Projection of 3D data and pdf on X"),Bins(40)) ;
data->plotOn(frame) ;
model.plotOn(frame) ;
// D e f i n e p r o j e c t e d s i g n a l l i k e l i h o o d r a t i o
// ----------------------------------------------------------------------------------
// Calculate projection of signal and total likelihood on (y,z) observables
// i.e. integrate signal and composite model over x
RooAbsPdf* sigyz = sig.createProjection(x) ;
RooAbsPdf* totyz = model.createProjection(x) ;
// Construct the log of the signal / signal+background probability
RooFormulaVar llratio_func("llratio","log10(@0)-log10(@1)",RooArgList(*sigyz,*totyz)) ;
// P l o t d a t a w i t h a L L r a t i o c u t
// -------------------------------------------------------
// Calculate the llratio value for each event in the dataset
data->addColumn(llratio_func) ;
// Extract the subset of data with large signal likelihood
RooDataSet* dataSel = (RooDataSet*) data->reduce(Cut("llratio>0.7")) ;
// Make plot frame
RooPlot* frame2 = x.frame(Title("Same projection on X with LLratio(y,z)>0.7"),Bins(40)) ;
// Plot select data on frame
dataSel->plotOn(frame2) ;
// M a k e M C p r o j e c t i o n o f p d f w i t h s a m e L L r a t i o c u t
// ---------------------------------------------------------------------------------------------
// Generate large number of events for MC integration of pdf projection
RooDataSet* mcprojData = model.generate(RooArgSet(x,y,z),10000) ;
// Calculate LL ratio for each generated event and select MC events with llratio)0.7
mcprojData->addColumn(llratio_func) ;
RooDataSet* mcprojDataSel = (RooDataSet*) mcprojData->reduce(Cut("llratio>0.7")) ;
// Project model on x, integrating projected observables (y,z) with Monte Carlo technique
// on set of events with the same llratio cut as was applied to data
model.plotOn(frame2,ProjWData(*mcprojDataSel)) ;
TCanvas* c = new TCanvas("rf316_llratioplot","rf316_llratioplot",800,400) ;
c->Divide(2) ;
c->cd(1) ; gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.4) ; frame->Draw() ;
c->cd(2) ; gPad->SetLeftMargin(0.15) ; frame2->GetYaxis()->SetTitleOffset(1.4) ; frame2->Draw() ;
}