rf314_paramfitrange.C: 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #314
//////////////////////////////////////////////////////////////////////////
//
// 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #314
//
// Working with parameterized ranges in a fit. This an example of a
// fit with an acceptance that changes per-event
//
// pdf = exp(-t/tau) with t[tmin,5]
//
// where t and tmin are both observables in the dataset
//
// 07/2008 - Wouter Verkerke
//
/////////////////////////////////////////////////////////////////////////
#ifndef __CINT__
#include "RooGlobalFunc.h"
#endif
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooGaussian.h"
#include "RooConstVar.h"
#include "RooExponential.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "RooPlot.h"
#include "RooFitResult.h"
using namespace RooFit ;
void rf314_paramfitrange()
{
// D e f i n e o b s e r v a b l e s a n d d e c a y p d f
// ---------------------------------------------------------------
// Declare observables
RooRealVar t("t","t",0,5) ;
RooRealVar tmin("tmin","tmin",0,0,5) ;
// Make parameterized range in t : [tmin,5]
t.setRange(tmin,RooConst(t.getMax())) ;
// Make pdf
RooRealVar tau("tau","tau",-1.54,-10,-0.1) ;
RooExponential model("model","model",t,tau) ;
// C r e a t e i n p u t d a t a
// ------------------------------------
// Generate complete dataset without acceptance cuts (for reference)
RooDataSet* dall = model.generate(t,10000) ;
// Generate a (fake) prototype dataset for acceptance limit values
RooDataSet* tmp = RooGaussian("gmin","gmin",tmin,RooConst(0),RooConst(0.5)).generate(tmin,5000) ;
// Generate dataset with t values that observe (t>tmin)
RooDataSet* dacc = model.generate(t,ProtoData(*tmp)) ;
// F i t p d f t o d a t a i n a c c e p t a n c e r e g i o n
// -----------------------------------------------------------------------
RooFitResult* r = model.fitTo(*dacc,Save()) ;
// P l o t f i t t e d p d f o n f u l l a n d a c c e p t e d d a t a
// ---------------------------------------------------------------------------------
// Make plot frame, add datasets and overlay model
RooPlot* frame = t.frame(Title("Fit to data with per-event acceptance")) ;
dall->plotOn(frame,MarkerColor(kRed),LineColor(kRed)) ;
model.plotOn(frame) ;
dacc->plotOn(frame) ;
// Print fit results to demonstrate absence of bias
r->Print("v") ;
new TCanvas("rf314_paramranges","rf314_paramranges",600,600) ;
gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.6) ; frame->Draw() ;
return ;
}