/////////////////////////////////////////////////////////////////////////
//
// 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #303
//
// Use of tailored p.d.f as conditional p.d.fs.s
//
// pdf = gauss(x,f(y),sx | y ) with f(y) = a0 + a1*y
//
//
// 07/2008 - Wouter Verkerke
//
/////////////////////////////////////////////////////////////////////////
#ifndef __CINT__
#include "RooGlobalFunc.h"
#endif
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooDataHist.h"
#include "RooGaussian.h"
#include "RooPolyVar.h"
#include "RooProdPdf.h"
#include "RooPlot.h"
#include "TRandom.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "TH1.h"
using namespace RooFit ;
RooDataSet* makeFakeDataXY() ;
void rf303_conditional()
{
// S e t u p c o m p o s e d m o d e l g a u s s ( x , m ( y ) , s )
// -----------------------------------------------------------------------
// Create observables
RooRealVar x("x","x",-10,10) ;
RooRealVar y("y","y",-10,10) ;
// Create function f(y) = a0 + a1*y
RooRealVar a0("a0","a0",-0.5,-5,5) ;
RooRealVar a1("a1","a1",-0.5,-1,1) ;
RooPolyVar fy("fy","fy",y,RooArgSet(a0,a1)) ;
// Creat gauss(x,f(y),s)
RooRealVar sigma("sigma","width of gaussian",0.5,0.1,2.0) ;
RooGaussian model("model","Gaussian with shifting mean",x,fy,sigma) ;
// Obtain fake external experimental dataset with values for x and y
RooDataSet* expDataXY = makeFakeDataXY() ;
// G e n e r a t e d a t a f r o m c o n d i t i o n a l p . d . f m o d e l ( x | y )
// ---------------------------------------------------------------------------------------------
// Make subset of experimental data with only y values
RooDataSet* expDataY= (RooDataSet*) expDataXY->reduce(y) ;
// Generate 10000 events in x obtained from _conditional_ model(x|y) with y values taken from experimental data
RooDataSet *data = model.generate(x,ProtoData(*expDataY)) ;
data->Print() ;
// F i t c o n d i t i o n a l p . d . f m o d e l ( x | y ) t o d a t a
// ---------------------------------------------------------------------------------------------
model.fitTo(*expDataXY,ConditionalObservables(y)) ;
// P r o j e c t c o n d i t i o n a l p . d . f o n x a n d y d i m e n s i o n s
// ---------------------------------------------------------------------------------------------
// Plot x distribution of data and projection of model on x = 1/Ndata sum(data(y_i)) model(x;y_i)
RooPlot* xframe = x.frame() ;
expDataXY->plotOn(xframe) ;
model.plotOn(xframe,ProjWData(*expDataY)) ;
// Speed up (and approximate) projection by using binned clone of data for projection
RooAbsData* binnedDataY = expDataY->binnedClone() ;
model.plotOn(xframe,ProjWData(*binnedDataY),LineColor(kCyan),LineStyle(kDotted)) ;
// Show effect of projection with too coarse binning
((RooRealVar*)expDataY->get()->find("y"))->setBins(5) ;
RooAbsData* binnedDataY2 = expDataY->binnedClone() ;
model.plotOn(xframe,ProjWData(*binnedDataY2),LineColor(kRed)) ;
// Make canvas and draw RooPlots
new TCanvas("rf303_conditional","rf303_conditional",600, 460);
gPad->SetLeftMargin(0.15) ; xframe->GetYaxis()->SetTitleOffset(1.2) ; xframe->Draw() ;
}
RooDataSet* makeFakeDataXY()
{
RooRealVar x("x","x",-10,10) ;
RooRealVar y("y","y",-10,10) ;
RooArgSet coord(x,y) ;
RooDataSet* d = new RooDataSet("d","d",RooArgSet(x,y)) ;
for (int i=0 ; i<10000 ; i++) {
Double_t tmpy = gRandom->Gaus(0,10) ;
Double_t tmpx = gRandom->Gaus(0.5*tmpy,1) ;
if (fabs(tmpy)<10 && fabs(tmpx)<10) {
x = tmpx ;
y = tmpy ;
d->add(coord) ;
}
}
return d ;
}