// Show rendering of parametric surfaces.
// Author: Timur Pocheptsov
void glparametric()
{
// A parametric surface is defined by three functions:
// S(u, v) : {x(u, v), y(u, v), z(u, v)}.
// To create parametric surface and draw it one has to:
// 1. Create canvas, which support OpenGL drawing (two ways):
// a. Call gStyle->SetCanvasPreferGL(kTRUE)
// b. Or create canvas with name, wich contains "gl".
// 2. create TGLParametricEquation object.
// TGLParametricEquation *eq = new TGLParametricEquation("name",
// "some FORMULA here - x(u, v)",
// "some FORMULA here - y(u, v)",
// "some FORMULA here - z(u, v)",
// uMin, uMax, vMin, vMax);
// where FORMULA is the same string (mathematical expression),
// as in TF2, but you should use 'u' (or 'U') instead of 'x'
// and 'v' (or 'V') instead of 'y'.
// 3. Call equation->Draw();
// Parametric surfaces support 21 color "schemes", you can change
// the color:
// -place mouse cursor above surface (surface is selected in pad)
// -press 's' or 'S'.
gStyle->SetCanvasPreferGL(kTRUE);
TCanvas *c = new TCanvas("canvas","Parametric surfaces with gl", 100, 10,
700, 700);
c->SetFillColor(42);
gStyle->SetFrameFillColor(42);
c->Divide(2, 2);
c->cd(1);
TGLParametricEquation *p1 = new TGLParametricEquation("Conchoid",
"1.2 ^ u * (1 + cos(v)) * cos(u)",
"1.2 ^ u * (1 + cos(v)) * sin(u)",
"1.2 ^ u * sin(v) - 1.5 * 1.2 ^ u",
0., 6 * TMath::Pi(), 0., TMath::TwoPi());
p1->Draw();
c->cd(2);
TGLParametricEquation *p2 = new TGLParametricEquation("Apple",
"cos(u) * (4 + 3.8 * cos(v)) ",
"sin(u) * (4 + 3.8 * cos(v))",
"(cos(v) + sin(v) - 1) * (1 + sin(v)) * log(1 - pi * v / 10) + 7.5 * sin(v)",
0, TMath::TwoPi(), -TMath::Pi(), TMath::Pi());
p2->Draw();
c->cd(3);
TGLParametricEquation *p3 = new TGLParametricEquation("Toupie",
"(abs(u) - 1) ^ 2 * cos(v)",
"(abs(u) - 1) ^ 2 * sin(v)",
"u",
-1., 1., 0, TMath::TwoPi());
p3->Draw();
c->cd(4);
TGLParametricEquation *p4 = new TGLParametricEquation("Trangluoid trefoil",
"2 * sin(3 * u) / (2 + cos(v))",
"2 * (sin(u) + 2 * sin(2 * u)) / (2 + cos(v + 2 * pi / 3))",
"(cos(u) - 2 * cos(2 * u)) * (2 + cos(v)) * (2 + cos(v + 2 * pi / 3)) / 4",
-TMath::Pi(), TMath::Pi(), -TMath::Pi(), TMath::Pi());
p4->Draw();
}