void RadioNuclides() { // Macro that demonstrates usage of radioactive elements/materials/mixtures // with TGeo package. // // A radionuclide (TGeoElementRN) derives from the class TGeoElement and // provides additional information related to its radioactive properties and // decay modes. // // The radionuclides table is loaded on demand by any call: // TGeoElementRN *TGeoElementTable::GetElementRN(Int_t atomic_number, // Int_t atomic_charge, // Int_t isomeric_number) // The isomeric number is optional and the default value is 0. // // To create a radioactive material based on a radionuclide, one should use the // constructor: // TGeoMaterial(const char *name, TGeoElement *elem, Double_t density) // To create a radioactive mixture, one can use radionuclides as well as stable // elements: // TGeoMixture(const char *name, Int_t nelements, Double_t density); // TGeoMixture::AddElement(TGeoElement *elem, Double_t weight_fraction); // Once defined, one can retrieve the time evolution for the radioactive // materials/mixtures by using one of the 2 methods: // // void TGeoMaterial::FillMaterialEvolution(TObjArray *population, // Double_t precision=0.001) // To use this method, one has to provide an empty TObjArray object that will // be filled with all elements coming from the decay chain of the initial // radionuclides contained by the material/mixture. The precision represent the // cumulative branching ratio for which decay products are still considered. // The POPULATION list may contain stable elements as well as radionuclides, // depending on the initial elements. To test if an element is a radionuclide: // Bool_t TGeoElement::IsRadioNuclide() const // All radionuclides in the output population list have attached objects that // represent the time evolution of their fraction of nuclei with respect to the // top radionuclide in the decay chain. These objects (Bateman solutions) can be // retrieved and drawn: // TGeoBatemanSol *TGeoElementRN::Ratio(); // void TGeoBatemanSol::Draw(); // // Another method allows to create the evolution of a given radioactive // material/mixture at a given moment in time: // TGeoMaterial::DecayMaterial(Double_t time, Double_t precision=0.001) // The method will create the mixture that result from the decay of a initial // material/mixture at TIME, while all resulting elements having a fractional // weight less than PRECISION are excluded. //Author: Mihaela Gheata TGeoManager *geom = new TGeoManager("",""); TGeoElementTable *table = gGeoManager->GetElementTable(); TGeoElementRN *c14 = table->GetElementRN(14,6); TGeoElementRN *el1 = table->GetElementRN(53,20); TGeoElementRN *el2 = table->GetElementRN(78,38); // Radioactive material TGeoMaterial *mat = new TGeoMaterial("C14", c14, 1.3); printf("___________________________________________________________\n"); printf("Radioactive material:\n"); mat->Print(); Double_t time = 1.5e11; // seconds TGeoMaterial *decaymat = mat->DecayMaterial(time); printf("Radioactive material evolution after %g years:\n", time/3.1536e7); decaymat->Print(); //Radioactive mixture TGeoMixture *mix = new TGeoMixture("mix", 2, 7.3); mix->AddElement(el1, 0.35); mix->AddElement(el2, 0.65); printf("___________________________________________________________\n"); printf("Radioactive mixture:\n"); mix->Print(); time = 1000.; decaymat = mix->DecayMaterial(time); printf("Radioactive mixture evolution after %g seconds:\n", time); decaymat->Print(); TObjArray *vect = new TObjArray(); TCanvas *c1 = new TCanvas("c1","C14 decay", 800,600); c1->SetGrid(); mat->FillMaterialEvolution(vect); DrawPopulation(vect, c1, 0, 1.4e12); TLatex *tex = new TLatex(8.35e11,0.564871,"C_{N^{14}_{7}}"); tex->SetTextSize(0.0388601); tex->SetLineWidth(2); tex->Draw(); tex = new TLatex(3.33e11,0.0620678,"C_{C^{14}_{6}}"); tex->SetTextSize(0.0388601); tex->SetLineWidth(2); tex->Draw(); tex = new TLatex(9.4e11,0.098,"C_{X}=#frac{N_{X}(t)}{N_{0}(t=0)}=\ #sum_{j}#alpha_{j}e^{-#lambda_{j}t}"); tex->SetTextSize(0.0388601); tex->SetLineWidth(2); tex->Draw(); TPaveText *pt = new TPaveText(2.6903e+11,0.0042727,1.11791e+12,0.0325138,"br"); pt->SetFillColor(5); pt->SetTextAlign(12); pt->SetTextColor(4); text = pt->AddText("Time evolution of a population of radionuclides."); text = pt->AddText("The concentration of a nuclide X represent the "); text = pt->AddText("ratio between the number of X nuclei and the "); text = pt->AddText("number of nuclei of the top element of the decay"); text = pt->AddText("from which X derives from at T=0. "); pt->Draw(); c1->Modified(); vect->Clear(); TCanvas *c2 = new TCanvas("c2","Mixture decay", 1000,800); c2->SetGrid(); mix->FillMaterialEvolution(vect); DrawPopulation(vect, c2, 0.01, 1000., kTRUE); tex = new TLatex(0.019,0.861,"C_{Ca^{53}_{20}}"); tex->SetTextSize(0.0388601); tex->SetTextColor(1); tex->Draw(); tex = new TLatex(0.0311,0.078064,"C_{Sc^{52}_{21}}"); tex->SetTextSize(0.0388601); tex->SetTextColor(2); tex->Draw(); tex = new TLatex(0.1337,0.010208,"C_{Ti^{52}_{22}}"); tex->SetTextSize(0.0388601); tex->SetTextColor(3); tex->Draw(); tex = new TLatex(1.54158,0.00229644,"C_{V^{52}_{23}}"); tex->SetTextSize(0.0388601); tex->SetTextColor(4); tex->Draw(); tex = new TLatex(25.0522,0.00135315,"C_{Cr^{52}_{24}}"); tex->SetTextSize(0.0388601); tex->SetTextColor(5); tex->Draw(); tex = new TLatex(0.1056,0.5429,"C_{Sc^{53}_{21}}"); tex->SetTextSize(0.0388601); tex->SetTextColor(6); tex->Draw(); tex = new TLatex(0.411,0.1044,"C_{Ti^{53}_{22}}"); tex->SetTextSize(0.0388601); tex->SetTextColor(7); tex->Draw(); tex = new TLatex(2.93358,0.0139452,"C_{V^{53}_{23}}"); tex->SetTextSize(0.0388601); tex->SetTextColor(8); tex->Draw(); tex = new TLatex(10.6235,0.00440327,"C_{Cr^{53}_{24}}"); tex->SetTextSize(0.0388601); tex->SetTextColor(9); tex->Draw(); tex = new TLatex(15.6288,0.782976,"C_{Sr^{78}_{38}}"); tex->SetTextSize(0.0388601); tex->SetTextColor(1); tex->Draw(); tex = new TLatex(20.2162,0.141779,"C_{Rb^{78}_{37}}"); tex->SetTextSize(0.0388601); tex->SetTextColor(2); tex->Draw(); tex = new TLatex(32.4055,0.0302101,"C_{Kr^{78}_{36}}"); tex->SetTextSize(0.0388601); tex->SetTextColor(3); tex->Draw(); tex = new TLatex(117.,1.52,"C_{X}=#frac{N_{X}(t)}{N_{0}(t=0)}=#sum_{j}\ #alpha_{j}e^{-#lambda_{j}t}"); tex->SetTextSize(0.03); tex->SetLineWidth(2); tex->Draw(); TArrow *arrow = new TArrow(0.0235313,0.74106,0.0385371,0.115648,0.02,">"); arrow->SetFillColor(1); arrow->SetFillStyle(1001); arrow->SetLineWidth(2); arrow->SetAngle(30); arrow->Draw(); arrow = new TArrow(0.0543138,0.0586338,0.136594,0.0146596,0.02,">"); arrow->SetFillColor(1); arrow->SetFillStyle(1001); arrow->SetLineWidth(2); arrow->SetAngle(30); arrow->Draw(); arrow = new TArrow(0.31528,0.00722919,1.29852,0.00306079,0.02,">"); arrow->SetFillColor(1); arrow->SetFillStyle(1001); arrow->SetLineWidth(2); arrow->SetAngle(30); arrow->Draw(); arrow = new TArrow(4.13457,0.00201942,22.5047,0.00155182,0.02,">"); arrow->SetFillColor(1); arrow->SetFillStyle(1001); arrow->SetLineWidth(2); arrow->SetAngle(30); arrow->Draw(); arrow = new TArrow(0.0543138,0.761893,0.0928479,0.67253,0.02,">"); arrow->SetFillColor(1); arrow->SetFillStyle(1001); arrow->SetLineWidth(2); arrow->SetAngle(30); arrow->Draw(); arrow = new TArrow(0.238566,0.375717,0.416662,0.154727,0.02,">"); arrow->SetFillColor(1); arrow->SetFillStyle(1001); arrow->SetLineWidth(2); arrow->SetAngle(30); arrow->Draw(); arrow = new TArrow(0.653714,0.074215,2.41863,0.0213142,0.02,">"); arrow->SetFillColor(1); arrow->SetFillStyle(1001); arrow->SetLineWidth(2); arrow->SetAngle(30); arrow->Draw(); arrow = new TArrow(5.58256,0.00953882,10.6235,0.00629343,0.02,">"); arrow->SetFillColor(1); arrow->SetFillStyle(1001); arrow->SetLineWidth(2); arrow->SetAngle(30); arrow->Draw(); arrow = new TArrow(22.0271,0.601935,22.9926,0.218812,0.02,">"); arrow->SetFillColor(1); arrow->SetFillStyle(1001); arrow->SetLineWidth(2); arrow->SetAngle(30); arrow->Draw(); arrow = new TArrow(27.2962,0.102084,36.8557,0.045686,0.02,">"); arrow->SetFillColor(1); arrow->SetFillStyle(1001); arrow->SetLineWidth(2); arrow->SetAngle(30); arrow->Draw(); } void DrawPopulation(TObjArray *vect, TCanvas *can, Double_t tmin=0., Double_t tmax=0., Bool_t logx=kFALSE) { Int_t n = vect->GetEntriesFast(); TGeoElementRN *elem; TGeoBatemanSol *sol; can->SetLogy(); if (logx) can->SetLogx(); for (Int_t i=0; i<n; i++) { TGeoElement *el = (TGeoElement*)vect->At(i); if (!el->IsRadioNuclide()) continue; TGeoElementRN *elem = (TGeoElementRN *)el; TGeoBatemanSol *sol = elem->Ratio(); if (sol) { sol->SetLineColor(1+(i%9)); sol->SetLineWidth(2); if (tmax>0.) sol->SetRange(tmin,tmax); if (i==0) { sol->Draw(); TF1 *func = (TF1*)can->FindObject( Form("conc%s",sol->GetElement()->GetName())); if (func) { if (!strcmp(can->GetName(),"c1")) func->SetTitle( "Concentration of C14 derived elements;time[s];Ni/N0(C14)"); else func->SetTitle( "Concentration of elements derived from mixture Ca53+Sr78;\ time[s];Ni/N0(Ca53)"); } } else sol->Draw("SAME"); } } }