// @(#)root/mathcore:$Id$ // Author: Peter Malzacher 31/08/99 ////////////////////////////////////////////////////////////////////////// // // TRandom3 // // Random number generator class based on // M. Matsumoto and T. Nishimura, // Mersenne Twister: A 623-diminsionally equidistributed // uniform pseudorandom number generator // ACM Transactions on Modeling and Computer Simulation, // Vol. 8, No. 1, January 1998, pp 3--30. // // For more information see the Mersenne Twister homepage // http://www.math.keio.ac.jp/~matumoto/emt.html // // Advantage: large period 2**19937-1 // relativly fast // (only two times slower than TRandom, but // two times faster than TRandom2) // Drawback: a relative large internal state of 624 integers // // // Aug.99 ROOT implementation based on CLHEP by P.Malzacher // // the original code contains the following copyright notice: /* This library is free software; you can redistribute it and/or */ /* modify it under the terms of the GNU Library General Public */ /* License as published by the Free Software Foundation; either */ /* version 2 of the License, or (at your option) any later */ /* version. */ /* This library is distributed in the hope that it will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */ /* See the GNU Library General Public License for more details. */ /* You should have received a copy of the GNU Library General */ /* Public License along with this library; if not, write to the */ /* Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA */ /* 02111-1307 USA */ /* Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. */ /* When you use this, send an email to: matumoto@math.keio.ac.jp */ /* with an appropriate reference to your work. */ ///////////////////////////////////////////////////////////////////// #include "TRandom3.h" #include "TRandom2.h" #include "TClass.h" #include "TUUID.h" TRandom *gRandom = new TRandom3(); #ifdef R__COMPLETE_MEM_TERMINATION namespace { struct TRandomCleanup { ~TRandomCleanup() { delete gRandom; gRandom = 0; } }; static TRandomCleanup gCleanupRandom; } #endif ClassImp(TRandom3) //______________________________________________________________________________ TRandom3::TRandom3(UInt_t seed) { //*-*-*-*-*-*-*-*-*-*-*default constructor*-*-*-*-*-*-*-*-*-*-*-*-*-*-* // If seed is 0, the seed is automatically computed via a TUUID object. // In this case the seed is guaranteed to be unique in space and time. SetName("Random3"); SetTitle("Random number generator: Mersenne Twister"); SetSeed(seed); } //______________________________________________________________________________ TRandom3::~TRandom3() { //*-*-*-*-*-*-*-*-*-*-*default destructor*-*-*-*-*-*-*-*-*-*-*-*-*-*-* //*-* ================== } //______________________________________________________________________________ Double_t TRandom3::Rndm(Int_t) { // Machine independent random number generator. // Produces uniformly-distributed floating points in (0,1) // Method: Mersenne Twister UInt_t y; const Int_t kM = 397; const Int_t kN = 624; const UInt_t kTemperingMaskB = 0x9d2c5680; const UInt_t kTemperingMaskC = 0xefc60000; const UInt_t kUpperMask = 0x80000000; const UInt_t kLowerMask = 0x7fffffff; const UInt_t kMatrixA = 0x9908b0df; if (fCount624 >= kN) { Int_t i; for (i=0; i < kN-kM; i++) { y = (fMt[i] & kUpperMask) | (fMt[i+1] & kLowerMask); fMt[i] = fMt[i+kM] ^ (y >> 1) ^ ((y & 0x1) ? kMatrixA : 0x0); } for ( ; i < kN-1 ; i++) { y = (fMt[i] & kUpperMask) | (fMt[i+1] & kLowerMask); fMt[i] = fMt[i+kM-kN] ^ (y >> 1) ^ ((y & 0x1) ? kMatrixA : 0x0); } y = (fMt[kN-1] & kUpperMask) | (fMt[0] & kLowerMask); fMt[kN-1] = fMt[kM-1] ^ (y >> 1) ^ ((y & 0x1) ? kMatrixA : 0x0); fCount624 = 0; } y = fMt[fCount624++]; y ^= (y >> 11); y ^= ((y << 7 ) & kTemperingMaskB ); y ^= ((y << 15) & kTemperingMaskC ); y ^= (y >> 18); // 2.3283064365386963e-10 == 1./(max<UINt_t>+1) -> then returned value cannot be = 1.0 if (y) return ( (Double_t) y * 2.3283064365386963e-10); // * Power(2,-32) return Rndm(); } //______________________________________________________________________________ void TRandom3::RndmArray(Int_t n, Float_t *array) { // Return an array of n random numbers uniformly distributed in ]0,1] for(Int_t i=0; i<n; i++) array[i]=(Float_t)Rndm(); } //______________________________________________________________________________ void TRandom3::RndmArray(Int_t n, Double_t *array) { // Return an array of n random numbers uniformly distributed in ]0,1] Int_t k = 0; UInt_t y; const Int_t kM = 397; const Int_t kN = 624; const UInt_t kTemperingMaskB = 0x9d2c5680; const UInt_t kTemperingMaskC = 0xefc60000; const UInt_t kUpperMask = 0x80000000; const UInt_t kLowerMask = 0x7fffffff; const UInt_t kMatrixA = 0x9908b0df; while (k < n) { if (fCount624 >= kN) { Int_t i; for (i=0; i < kN-kM; i++) { y = (fMt[i] & kUpperMask) | (fMt[i+1] & kLowerMask); fMt[i] = fMt[i+kM] ^ (y >> 1) ^ ((y & 0x1) ? kMatrixA : 0x0); } for ( ; i < kN-1 ; i++) { y = (fMt[i] & kUpperMask) | (fMt[i+1] & kLowerMask); fMt[i] = fMt[i+kM-kN] ^ (y >> 1) ^ ((y & 0x1) ? kMatrixA : 0x0); } y = (fMt[kN-1] & kUpperMask) | (fMt[0] & kLowerMask); fMt[kN-1] = fMt[kM-1] ^ (y >> 1) ^ ((y & 0x1) ? kMatrixA : 0x0); fCount624 = 0; } y = fMt[fCount624++]; y ^= (y >> 11); y ^= ((y << 7 ) & kTemperingMaskB ); y ^= ((y << 15) & kTemperingMaskC ); y ^= (y >> 18); if (y) { array[k] = Double_t( y * 2.3283064365386963e-10); // * Power(2,-32) k++; } } } //______________________________________________________________________________ void TRandom3::SetSeed(UInt_t seed) { // Set the random generator sequence // if seed is 0 (default value) a TUUID is generated and used to fill // the first 8 integers of the seed array. // In this case the seed is guaranteed to be unique in space and time. // Use upgraded seeding procedure to fix a known problem when seeding with values // with many zero in the bit pattern (like 2**28). // see http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html TRandom::SetSeed(seed); fCount624 = 624; if (seed > 0) { fMt[0] = fSeed; // use multipliers from Knuth's "Art of Computer Programming" Vol. 2, 3rd Ed. p.106 for(Int_t i=1; i<624; i++) { fMt[i] = (1812433253 * ( fMt[i-1] ^ ( fMt[i-1] >> 30)) + i ); } } else { // use TRandom2 (which is based on TUUId to generate the seed // TRandom2 works fairly well and has been tested against example // layout in https://savannah.cern.ch/bugs/?99516 TRandom2 r(0); for (Int_t i = 0; i< 624; i++) { fMt[i] = static_cast<UInt_t> (4294967296.*r.Rndm()); } // warm up the generator calling it 10 times for (Int_t i = 0; i < 10; ++i) Rndm(); } } //______________________________________________________________________________ void TRandom3::Streamer(TBuffer &R__b) { // Stream an object of class TRandom3. if (R__b.IsReading()) { UInt_t R__s, R__c; Version_t R__v = R__b.ReadVersion(&R__s, &R__c); if (R__v > 1) { R__b.ReadClassBuffer(TRandom3::Class(), this, R__v, R__s, R__c); return; } //====process old versions before automatic schema evolution TRandom::Streamer(R__b); R__b.ReadStaticArray(fMt); R__b >> fCount624; R__b.CheckByteCount(R__s, R__c, TRandom3::IsA()); //====end of old versions } else { R__b.WriteClassBuffer(TRandom3::Class(),this); } }