/* -->
</pre>
<H1><A NAME="SECTION00010000000000000000"></A>
<A NAME="sec:lintra"></A>
<BR>
Principal Components Analysis (PCA)
</H1>
<P>
The current implementation is based on the LINTRA package from CERNLIB
by R. Brun, H. Hansroul, and J. Kubler.
The class has been implemented by Christian Holm Christensen in August 2000.
<P>
<H2><A NAME="SECTION00011000000000000000"></A>
<A NAME="sec:intro1"></A>
<BR>
Introduction
</H2>
<P>
In many applications of various fields of research, the treatment of
large amounts of data requires powerful techniques capable of rapid
data reduction and analysis. Usually, the quantities most
conveniently measured by the experimentalist, are not necessarily the
most significant for classification and analysis of the data. It is
then useful to have a way of selecting an optimal set of variables
necessary for the recognition process and reducing the dimensionality
of the problem, resulting in an easier classification procedure.
<P>
This paper describes the implementation of one such method of
feature selection, namely the principal components analysis. This
multidimensional technique is well known in the field of pattern
recognition and and its use in Particle Physics has been documented
elsewhere (cf. H. Wind, <I>Function Parameterization</I>, CERN
72-21).
<P>
<H2><A NAME="SECTION00012000000000000000"></A>
<A NAME="sec:overview"></A>
<BR>
Overview
</H2>
<P>
Suppose we have prototypes which are trajectories of particles,
passing through a spectrometer. If one measures the passage of the
particle at say 8 fixed planes, the trajectory is described by an
8-component vector:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\mathbf{x} = \left(x_0, x_1, \ldots, x_7\right)
\end{displaymath}
-->
<IMG
WIDTH="145" HEIGHT="31" BORDER="0"
SRC="gif/principal_img1.gif"
ALT="\begin{displaymath}
\mathbf{x} = \left(x_0, x_1, \ldots, x_7\right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
in 8-dimensional pattern space.
<P>
One proceeds by generating a a representative tracks sample and
building up the covariance matrix <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="gif/principal_img2.gif"
ALT="$\mathsf{C}$">. Its eigenvectors and
eigenvalues are computed by standard methods, and thus a new basis is
obtained for the original 8-dimensional space the expansion of the
prototypes,
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\mathbf{x}_m = \sum^7_{i=0} a_{m_i} \mathbf{e}_i
\quad
\mbox{where}
\quad
a_{m_i} = \mathbf{x}^T\bullet\mathbf{e}_i
\end{displaymath}
-->
<IMG
WIDTH="295" HEIGHT="58" BORDER="0"
SRC="gif/principal_img3.gif"
ALT="\begin{displaymath}
\mathbf{x}_m = \sum^7_{i=0} a_{m_i} \mathbf{e}_i
\quad
\mbox{where}
\quad
a_{m_i} = \mathbf{x}^T\bullet\mathbf{e}_i
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<P>
allows the study of the behavior of the coefficients <IMG
WIDTH="31" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img4.gif"
ALT="$a_{m_i}$"> for all
the tracks of the sample. The eigenvectors which are insignificant for
the trajectory description in the expansion will have their
corresponding coefficients <IMG
WIDTH="31" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img4.gif"
ALT="$a_{m_i}$"> close to zero for all the
prototypes.
<P>
On one hand, a reduction of the dimensionality is then obtained by
omitting these least significant vectors in the subsequent analysis.
<P>
On the other hand, in the analysis of real data, these least
significant variables(?) can be used for the pattern
recognition problem of extracting the valid combinations of
coordinates describing a true trajectory from the set of all possible
wrong combinations.
<P>
The program described here performs this principal components analysis
on a sample of data provided by the user. It computes the covariance
matrix, its eigenvalues ands corresponding eigenvectors and exhibits
the behavior of the principal components (<IMG
WIDTH="31" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img4.gif"
ALT="$a_{m_i}$">), thus providing
to the user all the means of understanding his data.
<P>
<H2><A NAME="SECTION00013000000000000000"></A>
<A NAME="sec:method"></A>
<BR>
Principal Components Method
</H2>
<P>
Let's consider a sample of <IMG
WIDTH="23" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="gif/principal_img5.gif"
ALT="$M$"> prototypes each being characterized by
<IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="gif/principal_img6.gif"
ALT="$P$"> variables
<!-- MATH
$x_0, x_1, \ldots, x_{P-1}$
-->
<IMG
WIDTH="107" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img7.gif"
ALT="$x_0, x_1, \ldots, x_{P-1}$">. Each prototype is a point, or a
column vector, in a <IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="gif/principal_img6.gif"
ALT="$P$">-dimensional <I>pattern space</I>.
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
\mathbf{x} = \left[\begin{array}{c}
x_0\\x_1\\\vdots\\x_{P-1}\end{array}\right]\,,
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="102" HEIGHT="102" BORDER="0"
SRC="gif/principal_img8.gif"
ALT="\begin{displaymath}
\mathbf{x} = \left[\begin{array}{c}
x_0\\ x_1\\ \vdots\\ x_{P-1}\end{array}\right]\,,
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(1)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where each <IMG
WIDTH="23" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img9.gif"
ALT="$x_n$"> represents the particular value associated with the
<IMG
WIDTH="15" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="gif/principal_img10.gif"
ALT="$n$">-dimension.
<P>
Those <IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="gif/principal_img6.gif"
ALT="$P$"> variables are the quantities accessible to the
experimentalist, but are not necessarily the most significant for the
classification purpose.
<P>
The <I>Principal Components Method</I> consists of applying a
<I>linear</I> transformation to the original variables. This
transformation is described by an orthogonal matrix and is equivalent
to a rotation of the original pattern space into a new set of
coordinate vectors, which hopefully provide easier feature
identification and dimensionality reduction.
<P>
Let's define the covariance matrix:
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
\mathsf{C} = \left\langle\mathbf{y}\mathbf{y}^T\right\rangle
\quad\mbox{where}\quad
\mathbf{y} = \mathbf{x} - \left\langle\mathbf{x}\right\rangle\,,
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:C"></A><IMG
WIDTH="267" HEIGHT="37" BORDER="0"
SRC="gif/principal_img11.gif"
ALT="\begin{displaymath}
\mathsf{C} = \left\langle\mathbf{y}\mathbf{y}^T\right\rangl...
...athbf{y} = \mathbf{x} - \left\langle\mathbf{x}\right\rangle\,,
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(2)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
and the brackets indicate mean value over the sample of <IMG
WIDTH="23" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="gif/principal_img5.gif"
ALT="$M$">
prototypes.
<P>
This matrix <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="gif/principal_img2.gif"
ALT="$\mathsf{C}$"> is real, positive definite, symmetric, and will
have all its eigenvalues greater then zero. It will now be show that
among the family of all the complete orthonormal bases of the pattern
space, the base formed by the eigenvectors of the covariance matrix
and belonging to the largest eigenvalues, corresponds to the most
significant features of the description of the original prototypes.
<P>
let the prototypes be expanded on into a set of <IMG
WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="gif/principal_img12.gif"
ALT="$N$"> basis vectors
<!-- MATH
$\mathbf{e}_n, n=0,\ldots,N,N+1, \ldots, P-1$
-->
<IMG
WIDTH="233" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img13.gif"
ALT="$\mathbf{e}_n, n=0,\ldots,N,N+1, \ldots, P-1$">,
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
\mathbf{y}_i = \sum^N_{i=0} a_{i_n} \mathbf{e}_n,
\quad
i = 1, \ldots, M,
\quad
N < P-1
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:yi"></A><IMG
WIDTH="303" HEIGHT="58" BORDER="0"
SRC="gif/principal_img14.gif"
ALT="\begin{displaymath}
\mathbf{y}_i = \sum^N_{i=0} a_{i_n} \mathbf{e}_n,
\quad
i = 0, \ldots, M,
\quad
N < P-1
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(3)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<P>
The `best' feature coordinates <IMG
WIDTH="23" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img15.gif"
ALT="$\mathbf{e}_n$">, spanning a <I>feature
space</I>, will be obtained by minimizing the error due to this
truncated expansion, i.e.,
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
\min\left(E_N\right) =
\min\left[\left\langle\left(\mathbf{y}_i - \sum^N_{i=0} a_{i_n} \mathbf{e}_n\right)^2\right\rangle\right]
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:mini"></A><IMG
WIDTH="306" HEIGHT="65" BORDER="0"
SRC="gif/principal_img16.gif"
ALT="\begin{displaymath}
\min\left(E_N\right) =
\min\left[\left\langle\left(\mathb...
...\sum^N_{i=0} a_{i_n} \mathbf{e}_n\right)^2\right\rangle\right]
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(4)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
with the conditions:
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
\mathbf{e}_k\bullet\mathbf{e}_j = \delta_{jk} =
\left\{\begin{array}{rcl}
1 & \mbox{for} & k = j\\
0 & \mbox{for} & k \neq j
\end{array}\right.
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:ortocond"></A><IMG
WIDTH="240" HEIGHT="54" BORDER="0"
SRC="gif/principal_img17.gif"
ALT="\begin{displaymath}
\mathbf{e}_k\bullet\mathbf{e}_j = \delta_{jk} =
\left\{\b...
...for} & k = j\\
0 & \mbox{for} & k \neq j
\end{array}\right.
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(5)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
<P>
Multiplying (<A HREF="prin_node1.html#eq:yi">3</A>) by
<!-- MATH
$\mathbf{e}^T_n$
-->
<IMG
WIDTH="24" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img18.gif"
ALT="$\mathbf{e}^T_n$"> using (<A HREF="prin_node1.html#eq:ortocond">5</A>),
we get
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
a_{i_n} = \mathbf{y}_i^T\bullet\mathbf{e}_n\,,
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:ai"></A><IMG
WIDTH="108" HEIGHT="31" BORDER="0"
SRC="gif/principal_img19.gif"
ALT="\begin{displaymath}
a_{i_n} = \mathbf{y}_i^T\bullet\mathbf{e}_n\,,
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(6)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
so the error becomes
<BR>
<DIV ALIGN="CENTER"><A NAME="eq:error"></A>
<!-- MATH
\begin{eqnarray}
E_N &=&
\left\langle\left[\sum_{n=N+1}^{P-1} a_{i_n}\mathbf{e}_n\right]^2\right\rangle\nonumber\\
&=&
\left\langle\left[\sum_{n=N+1}^{P-1} \mathbf{y}_i^T\bullet\mathbf{e}_n\mathbf{e}_n\right]^2\right\rangle\nonumber\\
&=&
\left\langle\sum_{n=N+1}^{P-1} \mathbf{e}_n^T\mathbf{y}_i\mathbf{y}_i^T\mathbf{e}_n\right\rangle\nonumber\\
&=&
\sum_{n=N+1}^{P-1} \mathbf{e}_n^T\mathsf{C}\mathbf{e}_n
\end{eqnarray}
-->
<TABLE ALIGN="CENTER" CELLPADDING="0" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img20.gif"
ALT="$\displaystyle E_N$"></TD>
<TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img21.gif"
ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" NOWRAP><IMG
WIDTH="151" HEIGHT="80" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img22.gif"
ALT="$\displaystyle \left\langle\left[\sum_{n=N+1}^{P-1} a_{i_n}\mathbf{e}_n\right]^2\right\rangle$"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"> </TD>
<TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img21.gif"
ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" NOWRAP><IMG
WIDTH="184" HEIGHT="80" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img23.gif"
ALT="$\displaystyle \left\langle\left[\sum_{n=N+1}^{P-1} \mathbf{y}_i^T\bullet\mathbf{e}_n\mathbf{e}_n\right]^2\right\rangle$"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"> </TD>
<TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img21.gif"
ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" NOWRAP><IMG
WIDTH="156" HEIGHT="69" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img24.gif"
ALT="$\displaystyle \left\langle\sum_{n=N+1}^{P-1} \mathbf{e}_n^T\mathbf{y}_i\mathbf{y}_i^T\mathbf{e}_n\right\rangle$"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"> </TD>
<TD ALIGN="CENTER" NOWRAP><IMG
WIDTH="18" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img21.gif"
ALT="$\textstyle =$"></TD>
<TD ALIGN="LEFT" NOWRAP><IMG
WIDTH="104" HEIGHT="69" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img25.gif"
ALT="$\displaystyle \sum_{n=N+1}^{P-1} \mathbf{e}_n^T\mathsf{C}\mathbf{e}_n$"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(7)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P>
<P>
The minimization of the sum in (<A HREF="prin_node1.html#eq:error">7</A>) is obtained when each
term
<!-- MATH
$\mathbf{e}_n^\mathsf{C}\mathbf{e}_n$
-->
<IMG
WIDTH="41" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img26.gif"
ALT="$\mathbf{e}_n^\mathsf{C}\mathbf{e}_n$"> is minimum, since <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="gif/principal_img2.gif"
ALT="$\mathsf{C}$"> is
positive definite. By the method of Lagrange multipliers, and the
condition (<A HREF="prin_node1.html#eq:ortocond">5</A>), we get
<P>
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
E_N = \sum^{P-1}_{n=N+1} \left(\mathbf{e}_n^T\mathsf{C}\mathbf{e}_n -
l_n\mathbf{e}_n^T\bullet\mathbf{e}_n + l_n\right)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:minerror"></A><IMG
WIDTH="291" HEIGHT="60" BORDER="0"
SRC="gif/principal_img27.gif"
ALT="\begin{displaymath}
E_N = \sum^{P-1}_{n=N+1} \left(\mathbf{e}_n^T\mathsf{C}\mathbf{e}_n -
l_n\mathbf{e}_n^T\bullet\mathbf{e}_n + l_n\right)
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(8)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
The minimum condition
<!-- MATH
$\frac{dE_N}{d\mathbf{e}^T_n} = 0$
-->
<IMG
WIDTH="68" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img28.gif"
ALT="$\frac{dE_N}{d\mathbf{e}^T_n} = 0$"> leads to the
equation
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
\mathsf{C}\mathbf{e}_n = l_n\mathbf{e}_n\,,
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:Ce"></A><IMG
WIDTH="91" HEIGHT="30" BORDER="0"
SRC="gif/principal_img29.gif"
ALT="\begin{displaymath}
\mathsf{C}\mathbf{e}_n = l_n\mathbf{e}_n\,,
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(9)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
which shows that <IMG
WIDTH="23" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img15.gif"
ALT="$\mathbf{e}_n$"> is an eigenvector of the covariance
matrix <IMG
WIDTH="16" HEIGHT="16" ALIGN="BOTTOM" BORDER="0"
SRC="gif/principal_img2.gif"
ALT="$\mathsf{C}$"> with eigenvalue <IMG
WIDTH="19" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img30.gif"
ALT="$l_n$">. The estimated minimum error is
then given by
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
E_N \sim \sum^{P-1}_{n=N+1} \mathbf{e}_n^T\bullet l_n\mathbf{e}_n
= \sum^{P-1}_{n=N+1} l_n\,,
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:esterror"></A><IMG
WIDTH="264" HEIGHT="60" BORDER="0"
SRC="gif/principal_img31.gif"
ALT="\begin{displaymath}
E_N \sim \sum^{P-1}_{n=N+1} \mathbf{e}_n^T\bullet l_n\mathbf{e}_n
= \sum^{P-1}_{n=N+1} l_n\,,
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(10)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
where
<!-- MATH
$l_n,\,n=N+1,\ldots,P$
-->
<IMG
WIDTH="161" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img32.gif"
ALT="$l_n,\,n=N+1,\ldots,P-1$"> are the eigenvalues associated with the
omitted eigenvectors in the expansion (<A HREF="prin_node1.html#eq:yi">3</A>). Thus, by choosing
the <IMG
WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="gif/principal_img12.gif"
ALT="$N$"> largest eigenvalues, and their associated eigenvectors, the
error <IMG
WIDTH="30" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img33.gif"
ALT="$E_N$"> is minimized.
<P>
The transformation matrix to go from the pattern space to the feature
space consists of the ordered eigenvectors
<!-- MATH
$\mathbf{e}_1,\ldots,\mathbf{e}_P$
-->
<IMG
WIDTH="80" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img34.gif"
ALT="$\mathbf{e}_0,\ldots,\mathbf{e}_{P-1}$"> for its columns
<BR>
<DIV ALIGN="RIGHT">
<!-- MATH
\begin{equation}
\mathsf{T} = \left[
\begin{array}{cccc}
\mathbf{e}_0 &
\mathbf{e}_1 &
\vdots &
\mathbf{e}_{P-1}
\end{array}\right]
= \left[
\begin{array}{cccc}
\mathbf{e}_{0_0} & \mathbf{e}_{1_0} & \cdots & \mathbf{e}_{{P-1}_0}\\
\mathbf{e}_{0_1} & \mathbf{e}_{1_1} & \cdots & \mathbf{e}_{{P-1}_1}\\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{e}_{0_{P-1}} & \mathbf{e}_{1_{P-1}} & \cdots & \mathbf{e}_{{P-1}_{P-1}}\\
\end{array}\right]
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP><A NAME="eq:trans"></A><IMG
WIDTH="378" HEIGHT="102" BORDER="0"
SRC="gif/principal_img35.gif"
ALT="\begin{displaymath}
\mathsf{T} = \left[
\begin{array}{cccc}
\mathbf{e}_0 &
\...
...bf{e}_{1_{P-1}} & \cdots & \mathbf{e}_{{P-1}_{P-1}}\\
\end{array}\right]
\end{displaymath}"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(11)</TD></TR>
</TABLE>
<BR CLEAR="ALL"></DIV><P></P>
This is an orthogonal transformation, or rotation, of the pattern
space and feature selection results in ignoring certain coordinates
in the transformed space.
<p>
<DIV ALIGN="RIGHT">
Christian Holm<br>
August 2000, CERN
</DIV>
<!--*/
// -->End_Html
#include "TPrincipal.h"
#include "TVectorD.h"
#include "TMatrixD.h"
#include "TMatrixDSymEigen.h"
#include "TMath.h"
#include "TList.h"
#include "TH2.h"
#include "TDatime.h"
#include "TBrowser.h"
#include "TROOT.h"
#include "Riostream.h"
ClassImp(TPrincipal);
TPrincipal::TPrincipal()
: fMeanValues(0),
fSigmas(0),
fCovarianceMatrix(1,1),
fEigenVectors(1,1),
fEigenValues(0),
fOffDiagonal(0),
fStoreData(kFALSE)
{
fTrace = 0;
fHistograms = 0;
fIsNormalised = kFALSE;
fNumberOfDataPoints = 0;
fNumberOfVariables = 0;
}
TPrincipal::TPrincipal(Int_t nVariables, Option_t *opt)
: fMeanValues(nVariables),
fSigmas(nVariables),
fCovarianceMatrix(nVariables,nVariables),
fEigenVectors(nVariables,nVariables),
fEigenValues(nVariables),
fOffDiagonal(nVariables),
fStoreData(kFALSE)
{
if (nVariables <= 1) {
Error("TPrincipal", "You can't be serious - nVariables == 1!!!");
return;
}
SetName("principal");
fTrace = 0;
fHistograms = 0;
fIsNormalised = kFALSE;
fNumberOfDataPoints = 0;
fNumberOfVariables = nVariables;
while (strlen(opt) > 0) {
switch(*opt++) {
case 'N':
case 'n':
fIsNormalised = kTRUE;
break;
case 'D':
case 'd':
fStoreData = kTRUE;
break;
default:
break;
}
}
if (!fMeanValues.IsValid())
Error("TPrincipal","Couldn't create vector mean values");
if (!fSigmas.IsValid())
Error("TPrincipal","Couldn't create vector sigmas");
if (!fCovarianceMatrix.IsValid())
Error("TPrincipal","Couldn't create covariance matrix");
if (!fEigenVectors.IsValid())
Error("TPrincipal","Couldn't create eigenvector matrix");
if (!fEigenValues.IsValid())
Error("TPrincipal","Couldn't create eigenvalue vector");
if (!fOffDiagonal.IsValid())
Error("TPrincipal","Couldn't create offdiagonal vector");
if (fStoreData) {
fUserData.ResizeTo(nVariables*1000);
fUserData.Zero();
if (!fUserData.IsValid())
Error("TPrincipal","Couldn't create user data vector");
}
}
TPrincipal::TPrincipal(const TPrincipal& pr) :
TNamed(pr),
fNumberOfDataPoints(pr.fNumberOfDataPoints),
fNumberOfVariables(pr.fNumberOfVariables),
fMeanValues(pr.fMeanValues),
fSigmas(pr.fSigmas),
fCovarianceMatrix(pr.fCovarianceMatrix),
fEigenVectors(pr.fEigenVectors),
fEigenValues(pr.fEigenValues),
fOffDiagonal(pr.fOffDiagonal),
fUserData(pr.fUserData),
fTrace(pr.fTrace),
fHistograms(pr.fHistograms),
fIsNormalised(pr.fIsNormalised),
fStoreData(pr.fStoreData)
{
}
TPrincipal& TPrincipal::operator=(const TPrincipal& pr)
{
if(this!=&pr) {
TNamed::operator=(pr);
fNumberOfDataPoints=pr.fNumberOfDataPoints;
fNumberOfVariables=pr.fNumberOfVariables;
fMeanValues=pr.fMeanValues;
fSigmas=pr.fSigmas;
fCovarianceMatrix=pr.fCovarianceMatrix;
fEigenVectors=pr.fEigenVectors;
fEigenValues=pr.fEigenValues;
fOffDiagonal=pr.fOffDiagonal;
fUserData=pr.fUserData;
fTrace=pr.fTrace;
fHistograms=pr.fHistograms;
fIsNormalised=pr.fIsNormalised;
fStoreData=pr.fStoreData;
}
return *this;
}
TPrincipal::~TPrincipal()
{
if (fHistograms) {
fHistograms->Delete();
delete fHistograms;
}
}
void TPrincipal::AddRow(const Double_t *p)
{
/*
</PRE>
Add a data point and update the covariance matrix. The input
array must be <TT>fNumberOfVariables</TT> long.
<P>
The Covariance matrix and mean values of the input data is caculated
on the fly by the following equations:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\left<x_i\right>^{(0)} = x_{i0}
\end{displaymath}
-->
<IMG
WIDTH="90" HEIGHT="31" BORDER="0"
SRC="gif/principal_img36.gif"
ALT="\begin{displaymath}
\left<x_i\right>^{(0)} = x_{i0}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\left<x_i\right>^{(n)} = \left<x_i\right>^{(n-1)}
+ \frac1n \left(x_{in} - \left<x_i\right>^{(n-1)}\right)
\end{displaymath}
-->
<IMG
WIDTH="302" HEIGHT="42" BORDER="0"
SRC="gif/principal_img37.gif"
ALT="\begin{displaymath}
\left<x_i\right>^{(n)} = \left<x_i\right>^{(n-1)}
+ \frac1n \left(x_{in} - \left<x_i\right>^{(n-1)}\right)
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
C_{ij}^{(0)} = 0
\end{displaymath}
-->
<IMG
WIDTH="62" HEIGHT="34" BORDER="0"
SRC="gif/principal_img38.gif"
ALT="\begin{displaymath}
C_{ij}^{(0)} = 0
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
C_{ij}^{(n)} = C_{ij}^{(n-1)}
+ \frac1{n-1}\left[\left(x_{in} - \left<x_i\right>^{(n)}\right)
\left(x_{jn} - \left<x_j\right>^{(n)}\right)\right]
- \frac1n C_{ij}^{(n-1)}
\end{displaymath}
-->
<IMG
WIDTH="504" HEIGHT="43" BORDER="0"
SRC="gif/principal_img39.gif"
ALT="\begin{displaymath}
C_{ij}^{(n)} = C_{ij}^{(n-1)}
+ \frac1{n-1}\left[\left(x_{i...
...\left<x_j\right>^{(n)}\right)\right]
- \frac1n C_{ij}^{(n-1)}
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
since this is a really fast method, with no rounding errors (please
refer to CERN 72-21 pp. 54-106).
<P>
The data is stored internally in a <TT>TVectorD</TT>, in the following
way:
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
\mathbf{x} = \left[\left(x_{0_0},\ldots,x_{{P-1}_0}\right),\ldots,
\left(x_{0_i},\ldots,x_{{P-1}_i}\right), \ldots\right]
\end{displaymath}
-->
<IMG
WIDTH="319" HEIGHT="31" BORDER="0"
SRC="gif/principal_img40.gif"
ALT="\begin{displaymath}
\mathbf{x} = \left[\left(x_{0_0},\ldots,x_{{P-1}_0}\right),\ldots,
\left(x_{0_i},\ldots,x_{{P-1}_i}\right), \ldots\right]
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
With <IMG
WIDTH="18" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="gif/principal_img6.gif"
ALT="$P$"> as defined in the class description.
<PRE>
*/
// End_Html
if (!p)
return;
Int_t i,j;
if (++fNumberOfDataPoints == 1) {
for (i = 0; i < fNumberOfVariables; i++)
fMeanValues(i) = p[i];
}
else {
Double_t cor = 1 - 1./Double_t(fNumberOfDataPoints);
for (i = 0; i < fNumberOfVariables; i++) {
fMeanValues(i) *= cor;
fMeanValues(i) += p[i] / Double_t(fNumberOfDataPoints);
Double_t t1 = (p[i] - fMeanValues(i)) / (fNumberOfDataPoints - 1);
for (j = 0; j < i + 1; j++) {
fCovarianceMatrix(i,j) *= cor;
fCovarianceMatrix(i,j) += t1 * (p[j] - fMeanValues(j));
}
}
}
if (!fStoreData)
return;
Int_t size = fUserData.GetNrows();
if (fNumberOfDataPoints * fNumberOfVariables > size)
fUserData.ResizeTo(size + size/2);
for (i = 0; i < fNumberOfVariables; i++) {
j = (fNumberOfDataPoints-1) * fNumberOfVariables + i;
fUserData(j) = p[i];
}
}
void TPrincipal::Browse(TBrowser *b)
{
if (fHistograms) {
TIter next(fHistograms);
TH1* h = 0;
while ((h = (TH1*)next()))
b->Add(h,h->GetName());
}
if (fStoreData)
b->Add(&fUserData,"User Data");
b->Add(&fCovarianceMatrix,"Covariance Matrix");
b->Add(&fMeanValues,"Mean value vector");
b->Add(&fSigmas,"Sigma value vector");
b->Add(&fEigenValues,"Eigenvalue vector");
b->Add(&fEigenVectors,"Eigenvector Matrix");
}
void TPrincipal::Clear(Option_t *opt)
{
if (fHistograms) {
fHistograms->Delete(opt);
}
fNumberOfDataPoints = 0;
fTrace = 0;
fCovarianceMatrix.Zero();
fEigenVectors.Zero();
fEigenValues.Zero();
fMeanValues.Zero();
fSigmas.Zero();
fOffDiagonal.Zero();
if (fStoreData) {
fUserData.ResizeTo(fNumberOfVariables * 1000);
fUserData.Zero();
}
}
const Double_t *TPrincipal::GetRow(Int_t row)
{
if (row >= fNumberOfDataPoints)
return 0;
if (!fStoreData)
return 0;
Int_t index = row * fNumberOfVariables;
return &fUserData(index);
}
void TPrincipal::MakeCode(const char *filename, Option_t *opt)
{
TString outName(filename);
if (!outName.EndsWith(".C") && !outName.EndsWith(".cxx"))
outName += ".C";
MakeRealCode(outName.Data(),"",opt);
}
void TPrincipal::MakeHistograms(const char *name, Option_t *opt)
{
Bool_t makeX = kFALSE;
Bool_t makeD = kFALSE;
Bool_t makeP = kFALSE;
Bool_t makeE = kFALSE;
Bool_t makeS = kFALSE;
Int_t len = strlen(opt);
Int_t i,j,k;
for (i = 0; i < len; i++) {
switch (opt[i]) {
case 'X':
case 'x':
if (fStoreData)
makeX = kTRUE;
break;
case 'd':
case 'D':
if (fStoreData)
makeD = kTRUE;
break;
case 'P':
case 'p':
if (fStoreData)
makeP = kTRUE;
break;
case 'E':
case 'e':
makeE = kTRUE;
break;
case 's':
case 'S':
if (fStoreData)
makeS = kTRUE;
break;
default:
Warning("MakeHistograms","Unknown option: %c",opt[i]);
}
}
if (!makeX && !makeD && !makeP && !makeE && !makeS)
return;
if (!fHistograms)
fHistograms = new TList;
if (makeX && fHistograms->FindObject(Form("%s_x000",name)))
makeX = kFALSE;
if (makeD && fHistograms->FindObject(Form("%s_d000",name)))
makeD = kFALSE;
if (makeP && fHistograms->FindObject(Form("%s_p000",name)))
makeP = kFALSE;
if (makeE && fHistograms->FindObject(Form("%s_e",name)))
makeE = kFALSE;
if (makeS && fHistograms->FindObject(Form("%s_s",name)))
makeS = kFALSE;
TH1F **hX = 0;
TH2F **hD = 0;
TH1F **hP = 0;
TH1F *hE = 0;
TH1F *hS = 0;
if (makeX)
hX = new TH1F * [fNumberOfVariables];
if (makeD)
hD = new TH2F * [fNumberOfVariables];
if (makeP)
hP = new TH1F * [fNumberOfVariables];
if (makeE){
hE = new TH1F(Form("%s_e",name), "Eigenvalues of Covariance matrix",
fNumberOfVariables,0,fNumberOfVariables);
hE->SetXTitle("Eigenvalue");
fHistograms->Add(hE);
}
if (makeS) {
hS = new TH1F(Form("%s_s",name),"E_{N}",
fNumberOfVariables-1,1,fNumberOfVariables);
hS->SetXTitle("N");
hS->SetYTitle("#sum_{i=1}^{M} (x_{i} - x'_{N,i})^{2}");
fHistograms->Add(hS);
}
for (i = 0; i < fNumberOfVariables; i++) {
if (makeX) {
Double_t xlowb = fMeanValues(i) - 4 * fSigmas(i);
Double_t xhighb = fMeanValues(i) + 4 * fSigmas(i);
Int_t xbins = fNumberOfDataPoints/100;
hX[i] = new TH1F(Form("%s_x%03d", name, i),
Form("Pattern space, variable %d", i),
xbins,xlowb,xhighb);
hX[i]->SetXTitle(Form("x_{%d}",i));
fHistograms->Add(hX[i]);
}
if(makeD) {
Double_t dlowb = 0;
Double_t dhighb = 20;
Int_t dbins = fNumberOfDataPoints/100;
hD[i] = new TH2F(Form("%s_d%03d", name, i),
Form("Distance from pattern to "
"feature space, variable %d", i),
dbins,dlowb,dhighb,
fNumberOfVariables-1,
1,
fNumberOfVariables);
hD[i]->SetXTitle(Form("|x_{%d} - x'_{%d,N}|/#sigma_{%d}",i,i,i));
hD[i]->SetYTitle("N");
fHistograms->Add(hD[i]);
}
if(makeP) {
Double_t et = TMath::Abs(fEigenValues(i) * fTrace);
Double_t plowb = -10 * TMath::Sqrt(et);
Double_t phighb = -plowb;
Int_t pbins = 100;
hP[i] = new TH1F(Form("%s_p%03d", name, i),
Form("Feature space, variable %d", i),
pbins,plowb,phighb);
hP[i]->SetXTitle(Form("p_{%d}",i));
fHistograms->Add(hP[i]);
}
if (makeE)
hE->Fill(i,fEigenValues(i));
}
if (!makeX && !makeP && !makeD && !makeS)
return;
Double_t *x = 0;
Double_t *p = new Double_t[fNumberOfVariables];
Double_t *d = new Double_t[fNumberOfVariables];
for (i = 0; i < fNumberOfDataPoints; i++) {
for (j = 0; j < fNumberOfVariables; j++)
p[j] = d[j] = 0;
x = (Double_t*)(GetRow(i));
R__ASSERT(x);
if (makeP||makeD||makeS)
X2P(x,p);
if (makeD || makeS) {
for (j = fNumberOfVariables; j > 0; j--) {
P2X(p,d,j);
for (k = 0; k < fNumberOfVariables; k++) {
d[k] = x[k] - d[k];
if (makeS)
hS->Fill(j,d[k]*d[k]);
if (makeD) {
d[k] = TMath::Abs(d[k]) / (fIsNormalised ? fSigmas(k) : 1);
(hD[k])->Fill(d[k],j);
}
}
}
}
if (makeX||makeP) {
for (j = 0; j < fNumberOfVariables; j++) {
if (makeX)
(hX[j])->Fill(x[j]);
if (makeP)
(hP[j])->Fill(p[j]);
}
}
}
if (hX)
delete [] hX;
if (hD)
delete [] hD;
if (hP)
delete [] hP;
if (d)
delete [] d;
if (p)
delete [] p;
if (makeS)
hS->Scale(Double_t(1.)/fNumberOfDataPoints);
}
void TPrincipal::MakeNormalised()
{
Int_t i,j;
for (i = 0; i < fNumberOfVariables; i++) {
fSigmas(i) = TMath::Sqrt(fCovarianceMatrix(i,i));
if (fIsNormalised)
for (j = 0; j <= i; j++)
fCovarianceMatrix(i,j) /= (fSigmas(i) * fSigmas(j));
fTrace += fCovarianceMatrix(i,i);
}
for (i = 0; i < fNumberOfVariables; i++)
for (j = 0; j <= i; j++) {
fCovarianceMatrix(i,j) /= fTrace;
fCovarianceMatrix(j,i) = fCovarianceMatrix(i,j);
}
}
void TPrincipal::MakeMethods(const char *classname, Option_t *opt)
{
MakeRealCode(Form("%sPCA.cxx", classname), classname, opt);
}
void TPrincipal::MakePrincipals()
{
MakeNormalised();
TMatrixDSym sym; sym.Use(fCovarianceMatrix.GetNrows(),fCovarianceMatrix.GetMatrixArray());
TMatrixDSymEigen eigen(sym);
fEigenVectors = eigen.GetEigenVectors();
fEigenValues = eigen.GetEigenValues();
for (Int_t i = 0; i < fNumberOfVariables; i++) {
if (fEigenValues[i] < 0) fEigenValues[i] = -fEigenValues[i];
}
}
void TPrincipal::MakeRealCode(const char *filename, const char *classname,
Option_t *)
{
Bool_t isMethod = (classname[0] == '\0' ? kFALSE : kTRUE);
const char *prefix = (isMethod ? Form("%s::", classname) : "");
const char *cv_qual = (isMethod ? "" : "static ");
ofstream outFile(filename,ios::out|ios::trunc);
if (!outFile) {
Error("MakeRealCode","couldn't open output file '%s'",filename);
return;
}
cout << "Writing on file \"" << filename << "\" ... " << flush;
outFile << "// -*- mode: c++ -*-" << endl;
outFile << "// " << endl
<< "// File " << filename
<< " generated by TPrincipal::MakeCode" << endl;
TDatime date;
outFile << "// on " << date.AsString() << endl;
outFile << "// ROOT version " << gROOT->GetVersion()
<< endl << "//" << endl;
outFile << "// This file contains the functions " << endl
<< "//" << endl
<< "// void " << prefix
<< "X2P(Double_t *x, Double_t *p); " << endl
<< "// void " << prefix
<< "P2X(Double_t *p, Double_t *x, Int_t nTest);"
<< endl << "//" << endl
<< "// The first for transforming original data x in " << endl
<< "// pattern space, to principal components p in " << endl
<< "// feature space. The second function is for the" << endl
<< "// inverse transformation, but using only nTest" << endl
<< "// of the principal components in the expansion" << endl
<< "// " << endl
<< "// See TPrincipal class documentation for more "
<< "information " << endl << "// " << endl;
outFile << "#ifndef __CINT__" << endl;
if (isMethod)
outFile << "#include \"" << classname << ".h\"" << endl;
else
outFile << "#include <Rtypes.h> // needed for Double_t etc" << endl;
outFile << "#endif" << endl << endl;
outFile << "//" << endl
<< "// Static data variables" << endl
<< "//" << endl;
outFile << cv_qual << "Int_t " << prefix << "gNVariables = "
<< fNumberOfVariables << ";" << endl;
outFile << endl << "// Assignment of eigenvector matrix." << endl
<< "// Elements are stored row-wise, that is" << endl
<< "// M[i][j] = e[i * nVariables + j] " << endl
<< "// where i and j are zero-based" << endl;
outFile << cv_qual << "Double_t " << prefix
<< "gEigenVectors[] = {" << flush;
Int_t i,j;
for (i = 0; i < fNumberOfVariables; i++) {
for (j = 0; j < fNumberOfVariables; j++) {
Int_t index = i * fNumberOfVariables + j;
outFile << (index != 0 ? "," : "" ) << endl
<< " " << fEigenVectors(i,j) << flush;
}
}
outFile << "};" << endl << endl;
outFile << "// Assignment to eigen value vector. Zero-based." << endl;
outFile << cv_qual << "Double_t " << prefix
<< "gEigenValues[] = {" << flush;
for (i = 0; i < fNumberOfVariables; i++)
outFile << (i != 0 ? "," : "") << endl
<< " " << fEigenValues(i) << flush;
outFile << endl << "};" << endl << endl;
outFile << "// Assignment to mean value vector. Zero-based." << endl;
outFile << cv_qual << "Double_t " << prefix
<< "gMeanValues[] = {" << flush;
for (i = 0; i < fNumberOfVariables; i++)
outFile << (i != 0 ? "," : "") << endl
<< " " << fMeanValues(i) << flush;
outFile << endl << "};" << endl << endl;
outFile << "// Assignment to sigma value vector. Zero-based." << endl;
outFile << cv_qual << "Double_t " << prefix
<< "gSigmaValues[] = {" << flush;
for (i = 0; i < fNumberOfVariables; i++)
outFile << (i != 0 ? "," : "") << endl
<< " " << (fIsNormalised ? fSigmas(i) : 1) << flush;
outFile << endl << "};" << endl << endl;
outFile << "// " << endl
<< "// The "
<< (isMethod ? "method " : "function ")
<< " void " << prefix
<< "X2P(Double_t *x, Double_t *p)"
<< endl << "// " << endl;
outFile << "void " << prefix
<< "X2P(Double_t *x, Double_t *p) {" << endl
<< " for (Int_t i = 0; i < gNVariables; i++) {" << endl
<< " p[i] = 0;" << endl
<< " for (Int_t j = 0; j < gNVariables; j++)" << endl
<< " p[i] += (x[j] - gMeanValues[j]) " << endl
<< " * gEigenVectors[j * gNVariables + i] "
<< "/ gSigmaValues[j];" << endl << endl << " }"
<< endl << "}" << endl << endl;
outFile << "// " << endl << "// The "
<< (isMethod ? "method " : "function ")
<< " void " << prefix
<< "P2X(Double_t *p, Double_t *x, Int_t nTest)"
<< endl << "// " << endl;
outFile << "void " << prefix
<< "P2X(Double_t *p, Double_t *x, Int_t nTest) {" << endl
<< " for (Int_t i = 0; i < gNVariables; i++) {" << endl
<< " x[i] = gMeanValues[i];" << endl
<< " for (Int_t j = 0; j < nTest; j++)" << endl
<< " x[i] += p[j] * gSigmaValues[i] " << endl
<< " * gEigenVectors[i * gNVariables + j];" << endl
<< " }" << endl << "}" << endl << endl;
outFile << "// EOF for " << filename << endl;
outFile.close();
cout << "done" << endl;
}
void TPrincipal::P2X(const Double_t *p, Double_t *x, Int_t nTest)
{
for (Int_t i = 0; i < fNumberOfVariables; i++){
x[i] = fMeanValues(i);
for (Int_t j = 0; j < nTest; j++)
x[i] += p[j] * (fIsNormalised ? fSigmas(i) : 1)
* fEigenVectors(i,j);
}
}
void TPrincipal::Print(Option_t *opt) const
{
Bool_t printV = kFALSE;
Bool_t printM = kFALSE;
Bool_t printS = kFALSE;
Bool_t printE = kFALSE;
Int_t len = strlen(opt);
for (Int_t i = 0; i < len; i++) {
switch (opt[i]) {
case 'V':
case 'v':
printV = kTRUE;
break;
case 'M':
case 'm':
printM = kTRUE;
break;
case 'S':
case 's':
printS = kTRUE;
break;
case 'E':
case 'e':
printE = kTRUE;
break;
default:
Warning("Print", "Unknown option '%c'",opt[i]);
break;
}
}
if (printM||printS||printE) {
cout << " Variable # " << flush;
if (printM)
cout << "| Mean Value " << flush;
if (printS)
cout << "| Sigma " << flush;
if (printE)
cout << "| Eigenvalue" << flush;
cout << endl;
cout << "-------------" << flush;
if (printM)
cout << "+------------" << flush;
if (printS)
cout << "+------------" << flush;
if (printE)
cout << "+------------" << flush;
cout << endl;
for (Int_t i = 0; i < fNumberOfVariables; i++) {
cout << setw(12) << i << " " << flush;
if (printM)
cout << "| " << setw(10) << setprecision(4)
<< fMeanValues(i) << " " << flush;
if (printS)
cout << "| " << setw(10) << setprecision(4)
<< fSigmas(i) << " " << flush;
if (printE)
cout << "| " << setw(10) << setprecision(4)
<< fEigenValues(i) << " " << flush;
cout << endl;
}
cout << endl;
}
if(printV) {
for (Int_t i = 0; i < fNumberOfVariables; i++) {
cout << "Eigenvector # " << i << flush;
TVectorD v(fNumberOfVariables);
v = TMatrixDColumn_const(fEigenVectors,i);
v.Print();
}
}
}
void TPrincipal::SumOfSquareResiduals(const Double_t *x, Double_t *s)
{
/*
</PRE>
Calculates the sum of the square residuals, that is
<BR><P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{displaymath}
E_N = \sum_{i=0}^{P-1} \left(x_i - x^\prime_i\right)^2
\end{displaymath}
-->
<IMG
WIDTH="147" HEIGHT="58" BORDER="0"
SRC="gif/principal_img52.gif"
ALT="\begin{displaymath}
E_N = \sum_{i=0}^{P-1} \left(x_i - x^\prime_i\right)^2
\end{displaymath}">
</DIV>
<BR CLEAR="ALL">
<P></P>
where
<!-- MATH
$x^\prime_i = \sum_{j=i}^N p_i e_{n_j}$
-->
<IMG
WIDTH="122" HEIGHT="40" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img53.gif"
ALT="$x^\prime_i = \sum_{j=i}^N p_i e_{n_j}$">, <IMG
WIDTH="19" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img54.gif"
ALT="$p_i$"> is the
<IMG
WIDTH="28" HEIGHT="23" ALIGN="BOTTOM" BORDER="0"
SRC="gif/principal_img55.gif"
ALT="$i^{\mbox{th}}$"> component of the principal vector, corresponding to
<IMG
WIDTH="20" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="gif/principal_img56.gif"
ALT="$x_i$">, the original data; I.e., the square distance to the space
spanned by <IMG
WIDTH="20" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="gif/principal_img12.gif"
ALT="$N$"> eigenvectors.
<BR>
<PRE>
*/
// End_Html
if (!x)
return;
Double_t p[100];
Double_t xp[100];
X2P(x,p);
for (Int_t i = fNumberOfVariables-1; i >= 0; i--) {
P2X(p,xp,i);
for (Int_t j = 0; j < fNumberOfVariables; j++) {
s[i] += (x[j] - xp[j])*(x[j] - xp[j]);
}
}
}
void TPrincipal::Test(Option_t *)
{
MakeHistograms("pca","S");
if (!fStoreData)
return;
TH1 *pca_s = 0;
if (fHistograms) pca_s = (TH1*)fHistograms->FindObject("pca_s");
if (!pca_s) {
Warning("Test", "Couldn't get histogram of square residuals");
return;
}
pca_s->Draw();
}
void TPrincipal::X2P(const Double_t *x, Double_t *p)
{
for (Int_t i = 0; i < fNumberOfVariables; i++){
p[i] = 0;
for (Int_t j = 0; j < fNumberOfVariables; j++)
p[i] += (x[j] - fMeanValues(j)) * fEigenVectors(j,i) /
(fIsNormalised ? fSigmas(j) : 1);
}
}