ROOT logo
// @(#)root/tmva $Id$    
// Author: Peter Speckmayer

/**********************************************************************************
 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis       *
 * Package: TMVA                                                                  *
 * Class  : GeneticAlgorithm                                                      *
 * Web    : http://tmva.sourceforge.net                                           *
 *                                                                                *
 * Description:                                                                   *
 *      Base definition for genetic algorithm                                     *
 *                                                                                *
 * Authors (alphabetical):                                                        *
 *      Peter Speckmayer <speckmay@mail.cern.ch>  - CERN, Switzerland             *
 *                                                                                *
 * Copyright (c) 2005:                                                            *
 *      CERN, Switzerland                                                         * 
 *      MPI-K Heidelberg, Germany                                                 * 
 *                                                                                *
 * Redistribution and use in source and binary forms, with or without             *
 * modification, are permitted according to the terms listed in LICENSE           *
 * (http://tmva.sourceforge.net/LICENSE)                                          *
 **********************************************************************************/

#ifndef ROOT_TMVA_GeneticAlgorithm
#define ROOT_TMVA_GeneticAlgorithm

//////////////////////////////////////////////////////////////////////////
//                                                                      //
// GeneticAlgorithm                                                     //
//                                                                      //
// Base definition for genetic algorithm                                //
//                                                                      //
//////////////////////////////////////////////////////////////////////////

#include <vector>
#include <deque>
#include <iosfwd>

#ifndef ROOT_TMVA_IFitterTarget
#include "TMVA/IFitterTarget.h"
#endif
#ifndef ROOT_TMVA_GeneticPopulation
#include "TMVA/GeneticPopulation.h"
#endif
#ifndef ROOT_TMVA_Types
#include "TMVA/Types.h"
#endif

namespace TMVA {
     
   class IFitterTarget;
   class Interval;
   class MsgLogger;

   class GeneticAlgorithm {

   public:
    
      GeneticAlgorithm( IFitterTarget& target, Int_t populationSize, 
                        const std::vector<TMVA::Interval*>& ranges, UInt_t seed = 0 );
      virtual ~GeneticAlgorithm();

      void Init();

      virtual Bool_t   HasConverged(Int_t steps = 10, Double_t ratio = 0.1);
      virtual Double_t SpreadControl(Int_t steps, Int_t ofSteps,
                                     Double_t factor);
      virtual Double_t NewFitness(Double_t oldValue, Double_t newValue);
      virtual Double_t CalculateFitness();
      virtual void Evolution();
      
      GeneticPopulation& GetGeneticPopulation() { return fPopulation; } 

      Double_t GetSpread() const { return fSpread; }
      void     SetSpread(Double_t s) { fSpread = s; }

      void   SetMakeCopies(Bool_t s) { fMakeCopies = s; }
      Bool_t GetMakeCopies() { return fMakeCopies; }

      Int_t    fConvCounter;              // converging? ... keeps track of the number of improvements

   protected:
   
      IFitterTarget&    fFitterTarget;    // the fitter target
      
      Double_t fConvValue;                // keeps track of the quantity of improvement

      // spread-control (stepsize)
      // successList keeps track of the improvements to be able
      
      std::deque<Int_t> fSuccessList;     // to adjust the stepSize      
      Double_t          fLastResult;      // remembers the last obtained result (for internal use)

      Double_t          fSpread;          // regulates the spread of the value change at mutation (sigma)
      Bool_t            fMirror;          // new values for mutation are mirror-mapped if outside of constraints
      Bool_t            fFirstTime;       // if true its the first time, so no evolution yet
      Bool_t            fMakeCopies;      // if true, the population will make copies of the first individuals
                                          // avoid for speed performance.
      Int_t             fPopulationSize;  // the size of the population

      const std::vector<TMVA::Interval*>& fRanges; // parameter ranges

      GeneticPopulation fPopulation;      // contains and controls the "individual"
      Double_t fBestFitness;

      mutable MsgLogger* fLogger;         // message logger
      MsgLogger& Log() const { return *fLogger; }          

      ClassDef(GeneticAlgorithm, 0)  // Genetic algorithm controller
   };
   
} // namespace TMVA

#endif
 GeneticAlgorithm.h:1
 GeneticAlgorithm.h:2
 GeneticAlgorithm.h:3
 GeneticAlgorithm.h:4
 GeneticAlgorithm.h:5
 GeneticAlgorithm.h:6
 GeneticAlgorithm.h:7
 GeneticAlgorithm.h:8
 GeneticAlgorithm.h:9
 GeneticAlgorithm.h:10
 GeneticAlgorithm.h:11
 GeneticAlgorithm.h:12
 GeneticAlgorithm.h:13
 GeneticAlgorithm.h:14
 GeneticAlgorithm.h:15
 GeneticAlgorithm.h:16
 GeneticAlgorithm.h:17
 GeneticAlgorithm.h:18
 GeneticAlgorithm.h:19
 GeneticAlgorithm.h:20
 GeneticAlgorithm.h:21
 GeneticAlgorithm.h:22
 GeneticAlgorithm.h:23
 GeneticAlgorithm.h:24
 GeneticAlgorithm.h:25
 GeneticAlgorithm.h:26
 GeneticAlgorithm.h:27
 GeneticAlgorithm.h:28
 GeneticAlgorithm.h:29
 GeneticAlgorithm.h:30
 GeneticAlgorithm.h:31
 GeneticAlgorithm.h:32
 GeneticAlgorithm.h:33
 GeneticAlgorithm.h:34
 GeneticAlgorithm.h:35
 GeneticAlgorithm.h:36
 GeneticAlgorithm.h:37
 GeneticAlgorithm.h:38
 GeneticAlgorithm.h:39
 GeneticAlgorithm.h:40
 GeneticAlgorithm.h:41
 GeneticAlgorithm.h:42
 GeneticAlgorithm.h:43
 GeneticAlgorithm.h:44
 GeneticAlgorithm.h:45
 GeneticAlgorithm.h:46
 GeneticAlgorithm.h:47
 GeneticAlgorithm.h:48
 GeneticAlgorithm.h:49
 GeneticAlgorithm.h:50
 GeneticAlgorithm.h:51
 GeneticAlgorithm.h:52
 GeneticAlgorithm.h:53
 GeneticAlgorithm.h:54
 GeneticAlgorithm.h:55
 GeneticAlgorithm.h:56
 GeneticAlgorithm.h:57
 GeneticAlgorithm.h:58
 GeneticAlgorithm.h:59
 GeneticAlgorithm.h:60
 GeneticAlgorithm.h:61
 GeneticAlgorithm.h:62
 GeneticAlgorithm.h:63
 GeneticAlgorithm.h:64
 GeneticAlgorithm.h:65
 GeneticAlgorithm.h:66
 GeneticAlgorithm.h:67
 GeneticAlgorithm.h:68
 GeneticAlgorithm.h:69
 GeneticAlgorithm.h:70
 GeneticAlgorithm.h:71
 GeneticAlgorithm.h:72
 GeneticAlgorithm.h:73
 GeneticAlgorithm.h:74
 GeneticAlgorithm.h:75
 GeneticAlgorithm.h:76
 GeneticAlgorithm.h:77
 GeneticAlgorithm.h:78
 GeneticAlgorithm.h:79
 GeneticAlgorithm.h:80
 GeneticAlgorithm.h:81
 GeneticAlgorithm.h:82
 GeneticAlgorithm.h:83
 GeneticAlgorithm.h:84
 GeneticAlgorithm.h:85
 GeneticAlgorithm.h:86
 GeneticAlgorithm.h:87
 GeneticAlgorithm.h:88
 GeneticAlgorithm.h:89
 GeneticAlgorithm.h:90
 GeneticAlgorithm.h:91
 GeneticAlgorithm.h:92
 GeneticAlgorithm.h:93
 GeneticAlgorithm.h:94
 GeneticAlgorithm.h:95
 GeneticAlgorithm.h:96
 GeneticAlgorithm.h:97
 GeneticAlgorithm.h:98
 GeneticAlgorithm.h:99
 GeneticAlgorithm.h:100
 GeneticAlgorithm.h:101
 GeneticAlgorithm.h:102
 GeneticAlgorithm.h:103
 GeneticAlgorithm.h:104
 GeneticAlgorithm.h:105
 GeneticAlgorithm.h:106
 GeneticAlgorithm.h:107
 GeneticAlgorithm.h:108
 GeneticAlgorithm.h:109
 GeneticAlgorithm.h:110
 GeneticAlgorithm.h:111
 GeneticAlgorithm.h:112
 GeneticAlgorithm.h:113
 GeneticAlgorithm.h:114
 GeneticAlgorithm.h:115