// @(#)root/hist:$Id: TGraphDelaunay.cxx,v 1.00 // Author: Olivier Couet, Luke Jones (Royal Holloway, University of London) /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ #include "TMath.h" #include "TGraph2D.h" #include "TGraphDelaunay.h" ClassImp(TGraphDelaunay) //______________________________________________________________________________ // // TGraphDelaunay generates a Delaunay triangulation of a TGraph2D. This // triangulation code derives from an implementation done by Luke Jones // (Royal Holloway, University of London) in April 2002 in the PAW context. // // This software cannot be guaranteed to work under all circumstances. They // were originally written to work with a few hundred points in an XY space // with similar X and Y ranges. // // Definition of Delaunay triangulation (After B. Delaunay): // For a set S of points in the Euclidean plane, the unique triangulation DT(S) // of S such that no point in S is inside the circumcircle of any triangle in // DT(S). DT(S) is the dual of the Voronoi diagram of S. If n is the number of // points in S, the Voronoi diagram of S is the partitioning of the plane // containing S points into n convex polygons such that each polygon contains // exactly one point and every point in a given polygon is closer to its // central point than to any other. A Voronoi diagram is sometimes also known // as a Dirichlet tessellation. //Begin_Html /* <img src="gif/dtvd.gif"> <br> <a href="http://www.cs.cornell.edu/Info/People/chew/Delaunay.html">This applet</a> gives a nice practical view of Delaunay triangulation and Voronoi diagram. */ //End_Html //______________________________________________________________________________ TGraphDelaunay::TGraphDelaunay() : TNamed("TGraphDelaunay","TGraphDelaunay") { // TGraphDelaunay default constructor fGraph2D = 0; fX = 0; fY = 0; fZ = 0; fNpoints = 0; fTriedSize = 0; fZout = 0.; fNdt = 0; fNhull = 0; fHullPoints = 0; fXN = 0; fYN = 0; fOrder = 0; fDist = 0; fPTried = 0; fNTried = 0; fMTried = 0; fInit = kFALSE; fXNmin = 0.; fXNmax = 0.; fYNmin = 0.; fYNmax = 0.; fXoffset = 0.; fYoffset = 0.; fXScaleFactor = 0.; fYScaleFactor = 0.; SetMaxIter(); } //______________________________________________________________________________ TGraphDelaunay::TGraphDelaunay(TGraph2D *g) : TNamed("TGraphDelaunay","TGraphDelaunay") { // TGraphDelaunay normal constructor fGraph2D = g; fX = fGraph2D->GetX(); fY = fGraph2D->GetY(); fZ = fGraph2D->GetZ(); fNpoints = fGraph2D->GetN(); fTriedSize = 0; fZout = 0.; fNdt = 0; fNhull = 0; fHullPoints = 0; fXN = 0; fYN = 0; fOrder = 0; fDist = 0; fPTried = 0; fNTried = 0; fMTried = 0; fInit = kFALSE; fXNmin = 0.; fXNmax = 0.; fYNmin = 0.; fYNmax = 0.; fXoffset = 0.; fYoffset = 0.; fXScaleFactor = 0.; fYScaleFactor = 0.; SetMaxIter(); } //______________________________________________________________________________ TGraphDelaunay::~TGraphDelaunay() { // TGraphDelaunay destructor. if (fPTried) delete [] fPTried; if (fNTried) delete [] fNTried; if (fMTried) delete [] fMTried; if (fHullPoints) delete [] fHullPoints; if (fOrder) delete [] fOrder; if (fDist) delete [] fDist; if (fXN) delete [] fXN; if (fYN) delete [] fYN; fPTried = 0; fNTried = 0; fMTried = 0; fHullPoints = 0; fOrder = 0; fDist = 0; fXN = 0; fYN = 0; } //______________________________________________________________________________ Double_t TGraphDelaunay::ComputeZ(Double_t x, Double_t y) { // Return the z value corresponding to the (x,y) point in fGraph2D // Initialise the Delaunay algorithm if needed. // CreateTrianglesDataStructure computes fXoffset, fYoffset, // fXScaleFactor and fYScaleFactor; // needed in this function. if (!fInit) { CreateTrianglesDataStructure(); FindHull(); fInit = kTRUE; } // Find the z value corresponding to the point (x,y). Double_t xx, yy; xx = (x+fXoffset)*fXScaleFactor; yy = (y+fYoffset)*fYScaleFactor; Double_t zz = Interpolate(xx, yy); // Wrong zeros may appear when points sit on a regular grid. // The following line try to avoid this problem. if (zz==0) zz = Interpolate(xx+0.0001, yy); return zz; } //______________________________________________________________________________ void TGraphDelaunay::CreateTrianglesDataStructure() { // Function used internally only. It creates the data structures needed to // compute the Delaunay triangles. // Offset fX and fY so they average zero, and scale so the average // of the X and Y ranges is one. The normalized version of fX and fY used // in Interpolate. Double_t xmax = fGraph2D->GetXmax(); Double_t ymax = fGraph2D->GetYmax(); Double_t xmin = fGraph2D->GetXmin(); Double_t ymin = fGraph2D->GetYmin(); fXoffset = -(xmax+xmin)/2.; fYoffset = -(ymax+ymin)/2.; fXScaleFactor = 1./(xmax-xmin); fYScaleFactor = 1./(ymax-ymin); fXNmax = (xmax+fXoffset)*fXScaleFactor; fXNmin = (xmin+fXoffset)*fXScaleFactor; fYNmax = (ymax+fYoffset)*fYScaleFactor; fYNmin = (ymin+fYoffset)*fYScaleFactor; fXN = new Double_t[fNpoints+1]; fYN = new Double_t[fNpoints+1]; for (Int_t n=0; n<fNpoints; n++) { fXN[n+1] = (fX[n]+fXoffset)*fXScaleFactor; fYN[n+1] = (fY[n]+fYoffset)*fYScaleFactor; } // If needed, creates the arrays to hold the Delaunay triangles. // A maximum number of 2*fNpoints is guessed. If more triangles will be // find, FillIt will automatically enlarge these arrays. fTriedSize = 2*fNpoints; fPTried = new Int_t[fTriedSize]; fNTried = new Int_t[fTriedSize]; fMTried = new Int_t[fTriedSize]; } //______________________________________________________________________________ Bool_t TGraphDelaunay::Enclose(Int_t t1, Int_t t2, Int_t t3, Int_t e) const { // Is point e inside the triangle t1-t2-t3 ? Double_t x[4],y[4],xp, yp; x[0] = fXN[t1]; x[1] = fXN[t2]; x[2] = fXN[t3]; x[3] = x[0]; y[0] = fYN[t1]; y[1] = fYN[t2]; y[2] = fYN[t3]; y[3] = y[0]; xp = fXN[e]; yp = fYN[e]; return TMath::IsInside(xp, yp, 4, x, y); } //______________________________________________________________________________ void TGraphDelaunay::FileIt(Int_t p, Int_t n, Int_t m) { // Files the triangle defined by the 3 vertices p, n and m into the // fxTried arrays. If these arrays are to small they are automatically // expanded. Bool_t swap; Int_t tmp, ps = p, ns = n, ms = m; // order the vertices before storing them L1: swap = kFALSE; if (ns > ps) { tmp = ps; ps = ns; ns = tmp; swap = kTRUE;} if (ms > ns) { tmp = ns; ns = ms; ms = tmp; swap = kTRUE;} if (swap) goto L1; // expand the triangles storage if needed if (fNdt>=fTriedSize) { Int_t newN = 2*fTriedSize; Int_t *savep = new Int_t [newN]; Int_t *saven = new Int_t [newN]; Int_t *savem = new Int_t [newN]; memcpy(savep,fPTried,fTriedSize*sizeof(Int_t)); memset(&savep[fTriedSize],0,(newN-fTriedSize)*sizeof(Int_t)); delete [] fPTried; memcpy(saven,fNTried,fTriedSize*sizeof(Int_t)); memset(&saven[fTriedSize],0,(newN-fTriedSize)*sizeof(Int_t)); delete [] fNTried; memcpy(savem,fMTried,fTriedSize*sizeof(Int_t)); memset(&savem[fTriedSize],0,(newN-fTriedSize)*sizeof(Int_t)); delete [] fMTried; fPTried = savep; fNTried = saven; fMTried = savem; fTriedSize = newN; } // store a new Delaunay triangle fNdt++; fPTried[fNdt-1] = ps; fNTried[fNdt-1] = ns; fMTried[fNdt-1] = ms; } //______________________________________________________________________________ void TGraphDelaunay::FindAllTriangles() { // Attempt to find all the Delaunay triangles of the point set. It is not // guaranteed that it will fully succeed, and no check is made that it has // fully succeeded (such a check would be possible by referencing the points // that make up the convex hull). The method is to check if each triangle // shares all three of its sides with other triangles. If not, a point is // generated just outside the triangle on the side(s) not shared, and a new // triangle is found for that point. If this method is not working properly // (many triangles are not being found) it's probably because the new points // are too far beyond or too close to the non-shared sides. Fiddling with // the size of the `alittlebit' parameter may help. if (fAllTri) return; else fAllTri = kTRUE; Double_t xcntr,ycntr,xm,ym,xx,yy; Double_t sx,sy,nx,ny,mx,my,mdotn,nn,a; Int_t t1,t2,pa,na,ma,pb,nb,mb,p1=0,p2=0,m,n,p3=0; Bool_t s[3]; Double_t alittlebit = 0.0001; // start with a point that is guaranteed to be inside the hull (the // centre of the hull). The starting point is shifted "a little bit" // otherwise, in case of triangles aligned on a regular grid, we may // found none of them. xcntr = 0; ycntr = 0; for (n=1; n<=fNhull; n++) { xcntr = xcntr+fXN[fHullPoints[n-1]]; ycntr = ycntr+fYN[fHullPoints[n-1]]; } xcntr = xcntr/fNhull+alittlebit; ycntr = ycntr/fNhull+alittlebit; // and calculate it's triangle Interpolate(xcntr,ycntr); // loop over all Delaunay triangles (including those constantly being // produced within the loop) and check to see if their 3 sides also // correspond to the sides of other Delaunay triangles, i.e. that they // have all their neighbours. t1 = 1; while (t1 <= fNdt) { // get the three points that make up this triangle pa = fPTried[t1-1]; na = fNTried[t1-1]; ma = fMTried[t1-1]; // produce three integers which will represent the three sides s[0] = kFALSE; s[1] = kFALSE; s[2] = kFALSE; // loop over all other Delaunay triangles for (t2=1; t2<=fNdt; t2++) { if (t2 != t1) { // get the points that make up this triangle pb = fPTried[t2-1]; nb = fNTried[t2-1]; mb = fMTried[t2-1]; // do triangles t1 and t2 share a side? if ((pa==pb && na==nb) || (pa==pb && na==mb) || (pa==nb && na==mb)) { // they share side 1 s[0] = kTRUE; } else if ((pa==pb && ma==nb) || (pa==pb && ma==mb) || (pa==nb && ma==mb)) { // they share side 2 s[1] = kTRUE; } else if ((na==pb && ma==nb) || (na==pb && ma==mb) || (na==nb && ma==mb)) { // they share side 3 s[2] = kTRUE; } } // if t1 shares all its sides with other Delaunay triangles then // forget about it if (s[0] && s[1] && s[2]) continue; } // Looks like t1 is missing a neighbour on at least one side. // For each side, take a point a little bit beyond it and calculate // the Delaunay triangle for that point, this should be the triangle // which shares the side. for (m=1; m<=3; m++) { if (!s[m-1]) { // get the two points that make up this side if (m == 1) { p1 = pa; p2 = na; p3 = ma; } else if (m == 2) { p1 = pa; p2 = ma; p3 = na; } else if (m == 3) { p1 = na; p2 = ma; p3 = pa; } // get the coordinates of the centre of this side xm = (fXN[p1]+fXN[p2])/2.; ym = (fYN[p1]+fYN[p2])/2.; // we want to add a little to these coordinates to get a point just // outside the triangle; (sx,sy) will be the vector that represents // the side sx = fXN[p1]-fXN[p2]; sy = fYN[p1]-fYN[p2]; // (nx,ny) will be the normal to the side, but don't know if it's // pointing in or out yet nx = sy; ny = -sx; nn = TMath::Sqrt(nx*nx+ny*ny); nx = nx/nn; ny = ny/nn; mx = fXN[p3]-xm; my = fYN[p3]-ym; mdotn = mx*nx+my*ny; if (mdotn > 0) { // (nx,ny) is pointing in, we want it pointing out nx = -nx; ny = -ny; } // increase/decrease xm and ym a little to produce a point // just outside the triangle (ensuring that the amount added will // be large enough such that it won't be lost in rounding errors) a = TMath::Abs(TMath::Max(alittlebit*xm,alittlebit*ym)); xx = xm+nx*a; yy = ym+ny*a; // try and find a new Delaunay triangle for this point Interpolate(xx,yy); // this side of t1 should now, hopefully, if it's not part of the // hull, be shared with a new Delaunay triangle just calculated by Interpolate } } t1++; } } //______________________________________________________________________________ void TGraphDelaunay::FindHull() { // Finds those points which make up the convex hull of the set. If the xy // plane were a sheet of wood, and the points were nails hammered into it // at the respective coordinates, then if an elastic band were stretched // over all the nails it would form the shape of the convex hull. Those // nails in contact with it are the points that make up the hull. Int_t n,nhull_tmp; Bool_t in; if (!fHullPoints) fHullPoints = new Int_t[fNpoints]; nhull_tmp = 0; for(n=1; n<=fNpoints; n++) { // if the point is not inside the hull of the set of all points // bar it, then it is part of the hull of the set of all points // including it in = InHull(n,n); if (!in) { // cannot increment fNhull directly - InHull needs to know that // the hull has not yet been completely found nhull_tmp++; fHullPoints[nhull_tmp-1] = n; } } fNhull = nhull_tmp; } //______________________________________________________________________________ Bool_t TGraphDelaunay::InHull(Int_t e, Int_t x) const { // Is point e inside the hull defined by all points apart from x ? Int_t n1,n2,n,m,ntry; Double_t lastdphi,dd1,dd2,dx1,dx2,dx3,dy1,dy2,dy3; Double_t u,v,vNv1,vNv2,phi1,phi2,dphi,xx,yy; Bool_t deTinhull = kFALSE; xx = fXN[e]; yy = fYN[e]; if (fNhull > 0) { // The hull has been found - no need to use any points other than // those that make up the hull ntry = fNhull; } else { // The hull has not yet been found, will have to try every point ntry = fNpoints; } // n1 and n2 will represent the two points most separated by angle // from point e. Initially the angle between them will be <180 degs. // But subsequent points will increase the n1-e-n2 angle. If it // increases above 180 degrees then point e must be surrounded by // points - it is not part of the hull. n1 = 1; n2 = 2; if (n1 == x) { n1 = n2; n2++; } else if (n2 == x) { n2++; } // Get the angle n1-e-n2 and set it to lastdphi dx1 = xx-fXN[n1]; dy1 = yy-fYN[n1]; dx2 = xx-fXN[n2]; dy2 = yy-fYN[n2]; phi1 = TMath::ATan2(dy1,dx1); phi2 = TMath::ATan2(dy2,dx2); dphi = (phi1-phi2)-((Int_t)((phi1-phi2)/TMath::TwoPi())*TMath::TwoPi()); if (dphi < 0) dphi = dphi+TMath::TwoPi(); lastdphi = dphi; for (n=1; n<=ntry; n++) { if (fNhull > 0) { // Try hull point n m = fHullPoints[n-1]; } else { m = n; } if ((m!=n1) && (m!=n2) && (m!=x)) { // Can the vector e->m be represented as a sum with positive // coefficients of vectors e->n1 and e->n2? dx1 = xx-fXN[n1]; dy1 = yy-fYN[n1]; dx2 = xx-fXN[n2]; dy2 = yy-fYN[n2]; dx3 = xx-fXN[m]; dy3 = yy-fYN[m]; dd1 = (dx2*dy1-dx1*dy2); dd2 = (dx1*dy2-dx2*dy1); if (dd1*dd2!=0) { u = (dx2*dy3-dx3*dy2)/dd1; v = (dx1*dy3-dx3*dy1)/dd2; if ((u<0) || (v<0)) { // No, it cannot - point m does not lie inbetween n1 and n2 as // viewed from e. Replace either n1 or n2 to increase the // n1-e-n2 angle. The one to replace is the one which makes the // smallest angle with e->m vNv1 = (dx1*dx3+dy1*dy3)/TMath::Sqrt(dx1*dx1+dy1*dy1); vNv2 = (dx2*dx3+dy2*dy3)/TMath::Sqrt(dx2*dx2+dy2*dy2); if (vNv1 > vNv2) { n1 = m; phi1 = TMath::ATan2(dy3,dx3); phi2 = TMath::ATan2(dy2,dx2); } else { n2 = m; phi1 = TMath::ATan2(dy1,dx1); phi2 = TMath::ATan2(dy3,dx3); } dphi = (phi1-phi2)-((Int_t)((phi1-phi2)/TMath::TwoPi())*TMath::TwoPi()); if (dphi < 0) dphi = dphi+TMath::TwoPi(); if (((dphi-TMath::Pi())*(lastdphi-TMath::Pi())) < 0) { // The addition of point m means the angle n1-e-n2 has risen // above 180 degs, the point is in the hull. goto L10; } lastdphi = dphi; } } } } // Point e is not surrounded by points - it is not in the hull. goto L999; L10: deTinhull = kTRUE; L999: return deTinhull; } //______________________________________________________________________________ Double_t TGraphDelaunay::InterpolateOnPlane(Int_t TI1, Int_t TI2, Int_t TI3, Int_t e) const { // Finds the z-value at point e given that it lies // on the plane defined by t1,t2,t3 Int_t tmp; Bool_t swap; Double_t x1,x2,x3,y1,y2,y3,f1,f2,f3,u,v,w; Int_t t1 = TI1; Int_t t2 = TI2; Int_t t3 = TI3; // order the vertices L1: swap = kFALSE; if (t2 > t1) { tmp = t1; t1 = t2; t2 = tmp; swap = kTRUE;} if (t3 > t2) { tmp = t2; t2 = t3; t3 = tmp; swap = kTRUE;} if (swap) goto L1; x1 = fXN[t1]; x2 = fXN[t2]; x3 = fXN[t3]; y1 = fYN[t1]; y2 = fYN[t2]; y3 = fYN[t3]; f1 = fZ[t1-1]; f2 = fZ[t2-1]; f3 = fZ[t3-1]; u = (f1*(y2-y3)+f2*(y3-y1)+f3*(y1-y2))/(x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2)); v = (f1*(x2-x3)+f2*(x3-x1)+f3*(x1-x2))/(y1*(x2-x3)+y2*(x3-x1)+y3*(x1-x2)); w = f1-u*x1-v*y1; return u*fXN[e]+v*fYN[e]+w; } //______________________________________________________________________________ Double_t TGraphDelaunay::Interpolate(Double_t xx, Double_t yy) { // Finds the Delaunay triangle that the point (xi,yi) sits in (if any) and // calculate a z-value for it by linearly interpolating the z-values that // make up that triangle. Double_t thevalue; Int_t it, ntris_tried, p, n, m; Int_t i,j,k,l,z,f,d,o1,o2,a,b,t1,t2,t3; Int_t ndegen=0,degen=0,fdegen=0,o1degen=0,o2degen=0; Double_t vxN,vyN; Double_t d1,d2,d3,c1,c2,dko1,dko2,dfo1; Double_t dfo2,sin_sum,cfo1k,co2o1k,co2o1f; Bool_t shouldbein; Double_t dx1,dx2,dx3,dy1,dy2,dy3,u,v,dxz[3],dyz[3]; // initialise the Delaunay algorithm if needed if (!fInit) { CreateTrianglesDataStructure(); FindHull(); fInit = kTRUE; } // create vectors needed for sorting if (!fOrder) { fOrder = new Int_t[fNpoints]; fDist = new Double_t[fNpoints]; } // the input point will be point zero. fXN[0] = xx; fYN[0] = yy; // set the output value to the default value for now thevalue = fZout; // some counting ntris_tried = 0; // no point in proceeding if xx or yy are silly if ((xx>fXNmax) || (xx<fXNmin) || (yy>fYNmax) || (yy<fYNmin)) return thevalue; // check existing Delaunay triangles for a good one for (it=1; it<=fNdt; it++) { p = fPTried[it-1]; n = fNTried[it-1]; m = fMTried[it-1]; // p, n and m form a previously found Delaunay triangle, does it // enclose the point? if (Enclose(p,n,m,0)) { // yes, we have the triangle thevalue = InterpolateOnPlane(p,n,m,0); return thevalue; } } // is this point inside the convex hull? shouldbein = InHull(0,-1); if (!shouldbein) return thevalue; // it must be in a Delaunay triangle - find it... // order mass points by distance in mass plane from desired point for (it=1; it<=fNpoints; it++) { vxN = fXN[it]; vyN = fYN[it]; fDist[it-1] = TMath::Sqrt((xx-vxN)*(xx-vxN)+(yy-vyN)*(yy-vyN)); } // sort array 'fDist' to find closest points TMath::Sort(fNpoints, fDist, fOrder, kFALSE); for (it=0; it<fNpoints; it++) fOrder[it]++; // loop over triplets of close points to try to find a triangle that // encloses the point. for (k=3; k<=fNpoints; k++) { m = fOrder[k-1]; for (j=2; j<=k-1; j++) { n = fOrder[j-1]; for (i=1; i<=j-1; i++) { p = fOrder[i-1]; if (ntris_tried > fMaxIter) { // perhaps this point isn't in the hull after all /// Warning("Interpolate", /// "Abandoning the effort to find a Delaunay triangle (and thus interpolated z-value) for point %g %g" /// ,xx,yy); return thevalue; } ntris_tried++; // check the points aren't colinear d1 = TMath::Sqrt((fXN[p]-fXN[n])*(fXN[p]-fXN[n])+(fYN[p]-fYN[n])*(fYN[p]-fYN[n])); d2 = TMath::Sqrt((fXN[p]-fXN[m])*(fXN[p]-fXN[m])+(fYN[p]-fYN[m])*(fYN[p]-fYN[m])); d3 = TMath::Sqrt((fXN[n]-fXN[m])*(fXN[n]-fXN[m])+(fYN[n]-fYN[m])*(fYN[n]-fYN[m])); if ((d1+d2<=d3) || (d1+d3<=d2) || (d2+d3<=d1)) goto L90; // does the triangle enclose the point? if (!Enclose(p,n,m,0)) goto L90; // is it a Delaunay triangle? (ie. are there any other points // inside the circle that is defined by its vertices?) // test the triangle for Delaunay'ness // loop over all other points testing each to see if it's // inside the triangle's circle ndegen = 0; for ( z=1; z<=fNpoints; z++) { if ((z==p) || (z==n) || (z==m)) goto L50; // An easy first check is to see if point z is inside the triangle // (if it's in the triangle it's also in the circle) // point z cannot be inside the triangle if it's further from (xx,yy) // than the furthest pointing making up the triangle - test this for (l=1; l<=fNpoints; l++) { if (fOrder[l-1] == z) { if ((l<i) || (l<j) || (l<k)) { // point z is nearer to (xx,yy) than m, n or p - it could be in the // triangle so call enclose to find out // if it is inside the triangle this can't be a Delaunay triangle if (Enclose(p,n,m,z)) goto L90; } else { // there's no way it could be in the triangle so there's no point // calling enclose goto L1; } } } // is point z colinear with any pair of the triangle points? L1: if (((fXN[p]-fXN[z])*(fYN[p]-fYN[n])) == ((fYN[p]-fYN[z])*(fXN[p]-fXN[n]))) { // z is colinear with p and n a = p; b = n; } else if (((fXN[p]-fXN[z])*(fYN[p]-fYN[m])) == ((fYN[p]-fYN[z])*(fXN[p]-fXN[m]))) { // z is colinear with p and m a = p; b = m; } else if (((fXN[n]-fXN[z])*(fYN[n]-fYN[m])) == ((fYN[n]-fYN[z])*(fXN[n]-fXN[m]))) { // z is colinear with n and m a = n; b = m; } else { a = 0; b = 0; } if (a != 0) { // point z is colinear with 2 of the triangle points, if it lies // between them it's in the circle otherwise it's outside if (fXN[a] != fXN[b]) { if (((fXN[z]-fXN[a])*(fXN[z]-fXN[b])) < 0) { goto L90; } else if (((fXN[z]-fXN[a])*(fXN[z]-fXN[b])) == 0) { // At least two points are sitting on top of each other, we will // treat these as one and not consider this a 'multiple points lying // on a common circle' situation. It is a sign something could be // wrong though, especially if the two coincident points have // different fZ's. If they don't then this is harmless. Warning("Interpolate", "Two of these three points are coincident %d %d %d",a,b,z); } } else { if (((fYN[z]-fYN[a])*(fYN[z]-fYN[b])) < 0) { goto L90; } else if (((fYN[z]-fYN[a])*(fYN[z]-fYN[b])) == 0) { // At least two points are sitting on top of each other - see above. Warning("Interpolate", "Two of these three points are coincident %d %d %d",a,b,z); } } // point is outside the circle, move to next point goto L50; } // if point z were to look at the triangle, which point would it see // lying between the other two? (we're going to form a quadrilateral // from the points, and then demand certain properties of that // quadrilateral) dxz[0] = fXN[p]-fXN[z]; dyz[0] = fYN[p]-fYN[z]; dxz[1] = fXN[n]-fXN[z]; dyz[1] = fYN[n]-fYN[z]; dxz[2] = fXN[m]-fXN[z]; dyz[2] = fYN[m]-fYN[z]; for(l=1; l<=3; l++) { dx1 = dxz[l-1]; dx2 = dxz[l%3]; dx3 = dxz[(l+1)%3]; dy1 = dyz[l-1]; dy2 = dyz[l%3]; dy3 = dyz[(l+1)%3]; // u et v are used only to know their sign. The previous // code computed them with a division which was long and // might be a division by 0. It is now replaced by a // multiplication. u = (dy3*dx2-dx3*dy2)*(dy1*dx2-dx1*dy2); v = (dy3*dx1-dx3*dy1)*(dy2*dx1-dx2*dy1); if ((u>=0) && (v>=0)) { // vector (dx3,dy3) is expressible as a sum of the other two vectors // with positive coefficents -> i.e. it lies between the other two vectors if (l == 1) { f = m; o1 = p; o2 = n; } else if (l == 2) { f = p; o1 = n; o2 = m; } else { f = n; o1 = m; o2 = p; } goto L2; } } /// Error("Interpolate", "Should not get to here"); // may as well soldier on f = m; o1 = p; o2 = n; L2: // this is not a valid quadrilateral if the diagonals don't cross, // check that points f and z lie on opposite side of the line o1-o2, // this is true if the angle f-o1-z is greater than o2-o1-z and o2-o1-f cfo1k = ((fXN[f]-fXN[o1])*(fXN[z]-fXN[o1])+(fYN[f]-fYN[o1])*(fYN[z]-fYN[o1]))/ TMath::Sqrt(((fXN[f]-fXN[o1])*(fXN[f]-fXN[o1])+(fYN[f]-fYN[o1])*(fYN[f]-fYN[o1]))* ((fXN[z]-fXN[o1])*(fXN[z]-fXN[o1])+(fYN[z]-fYN[o1])*(fYN[z]-fYN[o1]))); co2o1k = ((fXN[o2]-fXN[o1])*(fXN[z]-fXN[o1])+(fYN[o2]-fYN[o1])*(fYN[z]-fYN[o1]))/ TMath::Sqrt(((fXN[o2]-fXN[o1])*(fXN[o2]-fXN[o1])+(fYN[o2]-fYN[o1])*(fYN[o2]-fYN[o1]))* ((fXN[z]-fXN[o1])*(fXN[z]-fXN[o1]) + (fYN[z]-fYN[o1])*(fYN[z]-fYN[o1]))); co2o1f = ((fXN[o2]-fXN[o1])*(fXN[f]-fXN[o1])+(fYN[o2]-fYN[o1])*(fYN[f]-fYN[o1]))/ TMath::Sqrt(((fXN[o2]-fXN[o1])*(fXN[o2]-fXN[o1])+(fYN[o2]-fYN[o1])*(fYN[o2]-fYN[o1]))* ((fXN[f]-fXN[o1])*(fXN[f]-fXN[o1]) + (fYN[f]-fYN[o1])*(fYN[f]-fYN[o1]) )); if ((cfo1k>co2o1k) || (cfo1k>co2o1f)) { // not a valid quadrilateral - point z is definitely outside the circle goto L50; } // calculate the 2 internal angles of the quadrangle formed by joining // points z and f to points o1 and o2, at z and f. If they sum to less // than 180 degrees then z lies outside the circle dko1 = TMath::Sqrt((fXN[z]-fXN[o1])*(fXN[z]-fXN[o1])+(fYN[z]-fYN[o1])*(fYN[z]-fYN[o1])); dko2 = TMath::Sqrt((fXN[z]-fXN[o2])*(fXN[z]-fXN[o2])+(fYN[z]-fYN[o2])*(fYN[z]-fYN[o2])); dfo1 = TMath::Sqrt((fXN[f]-fXN[o1])*(fXN[f]-fXN[o1])+(fYN[f]-fYN[o1])*(fYN[f]-fYN[o1])); dfo2 = TMath::Sqrt((fXN[f]-fXN[o2])*(fXN[f]-fXN[o2])+(fYN[f]-fYN[o2])*(fYN[f]-fYN[o2])); c1 = ((fXN[z]-fXN[o1])*(fXN[z]-fXN[o2])+(fYN[z]-fYN[o1])*(fYN[z]-fYN[o2]))/dko1/dko2; c2 = ((fXN[f]-fXN[o1])*(fXN[f]-fXN[o2])+(fYN[f]-fYN[o1])*(fYN[f]-fYN[o2]))/dfo1/dfo2; sin_sum = c1*TMath::Sqrt(1-c2*c2)+c2*TMath::Sqrt(1-c1*c1); // sin_sum doesn't always come out as zero when it should do. if (sin_sum < -1.E-6) { // z is inside the circle, this is not a Delaunay triangle goto L90; } else if (TMath::Abs(sin_sum) <= 1.E-6) { // point z lies on the circumference of the circle (within rounding errors) // defined by the triangle, so there is potential for degeneracy in the // triangle set (Delaunay triangulation does not give a unique way to split // a polygon whose points lie on a circle into constituent triangles). Make // a note of the additional point number. ndegen++; degen = z; fdegen = f; o1degen = o1; o2degen = o2; } L50: continue; } // This is a good triangle if (ndegen > 0) { // but is degenerate with at least one other, // haven't figured out what to do if more than 4 points are involved /// if (ndegen > 1) { /// Error("Interpolate", /// "More than 4 points lying on a circle. No decision making process formulated for triangulating this region in a non-arbitrary way %d %d %d %d", /// p,n,m,degen); /// return thevalue; /// } // we have a quadrilateral which can be split down either diagonal // (d<->f or o1<->o2) to form valid Delaunay triangles. Choose diagonal // with highest average z-value. Whichever we choose we will have // verified two triangles as good and two as bad, only note the good ones d = degen; f = fdegen; o1 = o1degen; o2 = o2degen; if ((fZ[o1-1]+fZ[o2-1]) > (fZ[d-1]+fZ[f-1])) { // best diagonalisation of quadrilateral is current one, we have // the triangle t1 = p; t2 = n; t3 = m; // file the good triangles FileIt(p, n, m); FileIt(d, o1, o2); } else { // use other diagonal to split quadrilateral, use triangle formed by // point f, the degnerate point d and whichever of o1 and o2 create // an enclosing triangle t1 = f; t2 = d; if (Enclose(f,d,o1,0)) { t3 = o1; } else { t3 = o2; } // file the good triangles FileIt(f, d, o1); FileIt(f, d, o2); } } else { // this is a Delaunay triangle, file it FileIt(p, n, m); t1 = p; t2 = n; t3 = m; } // do the interpolation thevalue = InterpolateOnPlane(t1,t2,t3,0); return thevalue; L90: continue; } } } if (shouldbein) { Error("Interpolate", "Point outside hull when expected inside: this point could be dodgy %g %g %d", xx, yy, ntris_tried); } return thevalue; } //______________________________________________________________________________ void TGraphDelaunay::SetMaxIter(Int_t n) { // Defines the number of triangles tested for a Delaunay triangle // (number of iterations) before abandoning the search fAllTri = kFALSE; fMaxIter = n; } //______________________________________________________________________________ void TGraphDelaunay::SetMarginBinsContent(Double_t z) { // Sets the histogram bin height for points lying outside the convex hull ie: // the bins in the margin. fZout = z; }