ROOT logo
// @(#)root/hist:$Id$
// Author: Frank Filthaut F.Filthaut@science.ru.nl  20/05/2002
// with additions by Bram Wijngaarden <dwijngaa@hef.kun.nl>

///////////////////////////////////////////////////////////////////////////////
//
// Fits MC fractions to data histogram (a la HMCMLL, see R. Barlow and C. Beeston,
// Comp. Phys. Comm. 77 (1993) 219-228, and http://www.hep.man.ac.uk/~roger/hfrac.f).
//
// The virtue of this fit is that it takes into account both data and Monte Carlo
// statistical uncertainties. The way in which this is done is through a standard
// likelihood fit using Poisson statistics; however, the template (MC) predictions
// are also varied within statistics, leading to additional contributions to the
// overall likelihood. This leads to many more fit parameters (one per bin per
// template), but the minimisation with respect to these additional parameters is
// done analytically rather than introducing them as formal fit parameters. Some
// special care needs to be taken in the case of bins with zero content. For more
// details please see the original publication cited above.
//
// An example application of this fit is given below. For a TH1* histogram
// ("data") fitted as the sum of three Monte Carlo sources ("mc"):
//
// {
//   TH1F *data;                              //data histogram
//   TH1F *mc0;                               // first MC histogram
//   TH1F *mc1;                               // second MC histogram
//   TH1F *mc2;                               // third MC histogram
//   ....                                     // retrieve histograms
//   TObjArray *mc = new TObjArray(3);        // MC histograms are put in this array
//   mc->Add(mc0);
//   mc->Add(mc1);
//   mc->Add(mc2);
//   TFractionFitter* fit = new TFractionFitter(data, mc); // initialise
//   fit->Constrain(1,0.0,1.0);               // constrain fraction 1 to be between 0 and 1
//   fit->SetRangeX(1,15);                    // use only the first 15 bins in the fit
//   Int_t status = fit->Fit();               // perform the fit
//   cout << "fit status: " << status << endl;
//   if (status == 0) {                       // check on fit status
//     TH1F* result = (TH1F*) fit->GetPlot();
//     data->Draw("Ep");
//     result->Draw("same");
//   }
// }
//
//
// Assumptions
// ===========
// A few assumptions need to be made for the fit procedure to be carried out:
//
// (1) The total number of events in each template is not too small
//     (so that its Poisson uncertainty can be neglected).
// (2) The number of events in each bin is much smaller than the total
//     number of events in each template (so that multinomial
//     uncertainties can be replaced with Poisson uncertainties).
//
// Biased fit uncertainties may result if these conditions are not fulfilled
// (see e.g. arXiv:0803.2711).
//
// Instantiation
// =============
// A fit object is instantiated through
//     TFractionFitter* fit = new TFractionFitter(data, mc);
// A number of basic checks (intended to ensure that the template histograms
// represent the same "kind" of distribution as the data one) are carried out.
// The TVirtualFitter object is then addressed and all fit parameters (the
// template fractions) declared (initially unbounded).
//
// Applying constraints
// ====================
// Fit parameters can be constrained through
//     fit->Constrain(parameter #, lower bound, upper bound);
// Setting lower bound = upper bound = 0 removes the constraint (a la Minuit);
// however, a function
//     fit->Unconstrain(parameter #)
// is also provided to simplify this.
//
// Setting parameter values
// ========================
// The function
//     TVirtualFitter* vFit = fit->GetFitter();
// is provided for direct access to the TVirtualFitter object. This allows to
// set and fix parameter values, and set step sizes directly.
//
// Restricting the fit range
// =========================
// The fit range can be restricted through
//     fit->SetRangeX(first bin #, last bin #);
// and freed using
//     fit->ReleaseRangeX();
// For 2D histograms the Y range can be similarly restricted using
//     fit->SetRangeY(first bin #, last bin #);
//     fit->ReleaseRangeY();
// and for 3D histograms also
//     fit->SetRangeZ(first bin #, last bin #);
//     fit->ReleaseRangeZ();
// It is also possible to exclude individual bins from the fit through
//     fit->ExcludeBin(bin #);
// where the given bin number is assumed to follow the TH1::GetBin() numbering.
// Any bins excluded in this way can be included again using the corresponding
//     fit->IncludeBin(bin #);
//
// Weights histograms
// ==================
// Weights histograms (for a motivation see the above publication) can be specified
// for the individual MC sources through
//     fit->SetWeight(parameter #, pointer to weights histogram);
// and unset by specifying a null pointer.
//
// Obtaining fit results
// =====================
// The fit is carried out through
//     Int_t status = fit->Fit();
// where  status  is the code returned from the "MINIMIZE" command. For fits
// that converged, parameter values and errors can be obtained through
//     fit->GetResult(parameter #, value, error);
// and the histogram corresponding to the total Monte Carlo prediction (which
// is not the same as a simple weighted sum of the input Monte Carlo distributions)
// can be obtained by
//     TH1* result = fit->GetPlot();
//
// Using different histograms
// ==========================
// It is possible to change the histogram being fitted through
//     fit->SetData(TH1* data);
// and to change the template histogram for a given parameter number through
//     fit->SetMC(parameter #, TH1* MC);
// This can speed up code in case of multiple data or template histograms;
// however, it should be done with care as any settings are taken over from
// the previous fit. In addition, neither the dimensionality nor the numbers of
// bins of the histograms should change (in that case it is better to instantiate
// a new TFractionFitter object).
//
// Errors
// ======
// Any serious inconsistency results in an error.
//
///////////////////////////////////////////////////////////////////////////////

#include "Riostream.h"
#include "TH1.h"
#include "TMath.h"
#include "TClass.h"

#include "TFractionFitter.h"

TVirtualFitter *fractionFitter=0;

ClassImp(TFractionFitter)

//______________________________________________________________________________
TFractionFitter::TFractionFitter() :
fFitDone(kFALSE),
fLowLimitX(0), fHighLimitX(0),
fLowLimitY(0), fHighLimitY(0),
fLowLimitZ(0), fHighLimitZ(0),
fData(0), fIntegralData(0),
fPlot(0)
{
   // TFractionFitter default constructor.

   fractionFitter = 0;
   fIntegralMCs   = 0;
   fFractions     = 0;

   fNpfits        = 0;
   fNDF           = 0;
   fChisquare     = 0;
   fNpar          = 0;
}

//______________________________________________________________________________
TFractionFitter::TFractionFitter(TH1* data, TObjArray  *MCs, Option_t *option) :
fFitDone(kFALSE), fChisquare(0), fPlot(0)  {
   // TFractionFitter constructor. Does a complete initialisation (including
   // consistency checks, default fit range as the whole histogram but without
   // under- and overflows, and declaration of the fit parameters). Note that
   // the histograms are not copied, only references are used.
   // Arguments:
   //     data: histogram to be fitted
   //     MCs:  array of TH1* corresponding template distributions
   //    Option:  can be used to control the print level of the minimization algorithm
   //             option = "Q"  : quite - no message is printed
   //             option = "V"  : verbose - max print out
   //             option = ""   : default: print initial fraction values and result

   fData = data;
   // Default: include all of the histogram (but without under- and overflows)
   fLowLimitX = 1;
   fHighLimitX = fData->GetNbinsX();
   if (fData->GetDimension() > 1) {
      fLowLimitY = 1;
      fHighLimitY = fData->GetNbinsY();
      if (fData->GetDimension() > 2) {
         fLowLimitZ = 1;
         fHighLimitZ = fData->GetNbinsZ();
      }
   }
   fNpar = MCs->GetEntries();
   Int_t par;
   for (par = 0; par < fNpar; ++par) {
      fMCs.Add(MCs->At(par));
      // Histogram containing template prediction
      TString s = Form("Prediction for MC sample %i",par);
      TH1* pred = (TH1*) ((TH1*)MCs->At(par))->Clone(s);
      pred->SetTitle(s);
      fAji.Add(pred);
   }
   fIntegralMCs = new Double_t[fNpar];
   fFractions = new Double_t[fNpar];

   CheckConsistency();
   fWeights.Expand(fNpar);

   fractionFitter = TVirtualFitter::Fitter(this, fNpar);
   fractionFitter->Clear();
   fractionFitter->SetObjectFit(this);
   fractionFitter->SetFCN(TFractionFitFCN);

   // set print level
   TString opt(option);
   opt.ToUpper();
   double plist[1];
   if (opt.Contains("Q") ) {
      plist[0] = -1;
      fractionFitter->ExecuteCommand("SET PRINT",plist,1);
      fractionFitter->ExecuteCommand("SET NOW",plist,0);
   }
   else if (opt.Contains("V") ) {
      plist[0] =  1;
      fractionFitter->ExecuteCommand("SET PRINT",plist,1);
   }

   Double_t defaultFraction = 1.0/((Double_t)fNpar);
   Double_t defaultStep = 0.01;
   for (par = 0; par < fNpar; ++par) {
      TString name("frac"); name += par;
      fractionFitter->SetParameter(par, name.Data(), defaultFraction, defaultStep, 0, 0);
   }
}

//______________________________________________________________________________
TFractionFitter::~TFractionFitter() {
   // TFractionFitter default destructor

   delete fractionFitter;
   delete[] fIntegralMCs;
   delete[] fFractions;
}

//______________________________________________________________________________
void TFractionFitter::SetData(TH1* data) {
   // Change the histogram to be fitted to. Notes:
   // - Parameter constraints and settings are retained from a possible previous fit.
   // - Modifying the dimension or number of bins results in an error (in this case
   //   rather instantiate a new TFractionFitter object)

   fData = data;
   fFitDone = kFALSE;
   CheckConsistency();
}

//______________________________________________________________________________
void TFractionFitter::SetMC(Int_t parm, TH1* MC) {
   // Change the histogram for template number <parm>. Notes:
   // - Parameter constraints and settings are retained from a possible previous fit.
   // - Modifying the dimension or number of bins results in an error (in this case
   //   rather instantiate a new TFractionFitter object)

   CheckParNo(parm);
   fMCs.RemoveAt(parm);
   fMCs.AddAt(MC,parm);
   fFitDone = kFALSE;
   CheckConsistency();
}

//______________________________________________________________________________
void TFractionFitter::SetWeight(Int_t parm, TH1* weight) {
   // Set bin by bin weights for template number <parm> (the parameter numbering
   // follows that of the input template vector).
   // Weights can be "unset" by passing a null pointer.
   // Consistency of the weights histogram with the data histogram is checked at
   // this point, and an error in case of problems.

   CheckParNo(parm);
   if (fWeights[parm]) {
      fWeights.RemoveAt(parm);
   }
   if (weight) {
      if (weight->GetNbinsX() != fData->GetNbinsX() ||
          (fData->GetDimension() > 1 && weight->GetNbinsY() != fData->GetNbinsY()) ||
          (fData->GetDimension() > 2 && weight->GetNbinsZ() != fData->GetNbinsZ())) {
         Error("SetWeight","Inconsistent weights histogram for source %d", parm);
         return;
      }
      TString ts = "weight hist: "; ts += weight->GetName();
      fWeights.AddAt(weight,parm);
   }
}

//______________________________________________________________________________
TVirtualFitter* TFractionFitter::GetFitter() const {
   // Give direct access to the underlying minimisation class. This can be
   // used e.g. to modify parameter values or step sizes.

   return fractionFitter;
}

//______________________________________________________________________________
void TFractionFitter::CheckParNo(Int_t parm) const {
   // Function for internal use, checking parameter validity
   // An invalid parameter results in an error.

   if (parm < 0 || parm > fNpar) {
      Error("CheckParNo","Invalid parameter number %d",parm);
   }
}

//______________________________________________________________________________
void TFractionFitter::SetRangeX(Int_t low, Int_t high) {
   // Set the X range of the histogram to be used in the fit.
   // Use ReleaseRangeX() to go back to fitting the full histogram.
   // The consistency check ensures that no empty fit range occurs (and also
   // recomputes the bin content integrals).
   // Arguments:
   //     low:  lower X bin number
   //     high: upper X bin number

   fLowLimitX = (low > 0 ) ? low : 1;
   fHighLimitX = ( high > 0 && high <= fData->GetNbinsX()) ? high : fData->GetNbinsX();
   CheckConsistency();
}

//______________________________________________________________________________
void TFractionFitter::ReleaseRangeX() {
   // Release restrictions on the X range of the histogram to be used in the fit.

   fLowLimitX = 1;
   fHighLimitX = fData->GetNbinsX();
   CheckConsistency();
}

//______________________________________________________________________________
void TFractionFitter::SetRangeY(Int_t low, Int_t high) {
   // Set the Y range of the histogram to be used in the fit (2D or 3D histograms only).
   // Use ReleaseRangeY() to go back to fitting the full histogram.
   // The consistency check ensures that no empty fit range occurs (and also
   // recomputes the bin content integrals).
   // Arguments:
   //     low:  lower Y bin number
   //     high: upper Y bin number

   if (fData->GetDimension() < 2) {
      Error("SetRangeY","Y range cannot be set for 1D histogram");
      return;
   }

   fLowLimitY = (low > 0) ? low : 1;
   fHighLimitY = (high > 0 && high <= fData->GetNbinsY()) ? high : fData->GetNbinsY();
   CheckConsistency();
}

//______________________________________________________________________________
void TFractionFitter::ReleaseRangeY() {
   // Release restrictions on the Y range of the histogram to be used in the fit.

   fLowLimitY = 1;
   fHighLimitY = fData->GetNbinsY();
   CheckConsistency();
}


//______________________________________________________________________________
void TFractionFitter::SetRangeZ(Int_t low, Int_t high) {
   // Set the Z range of the histogram to be used in the fit (3D histograms only).
   // Use ReleaseRangeY() to go back to fitting the full histogram.
   // The consistency check ensures that no empty fit range occurs (and also
   // recomputes the bin content integrals).
   // Arguments:
   //     low:  lower Y bin number
   //     high: upper Y bin number

   if (fData->GetDimension() < 3) {
      Error("SetRangeZ","Z range cannot be set for 1D or 2D histogram");
      return;
   }


   fLowLimitZ = (low > 0) ? low : 1;
   fHighLimitZ = (high > 0 && high <= fData->GetNbinsZ()) ? high : fData->GetNbinsZ();
   CheckConsistency();
}

//______________________________________________________________________________
void TFractionFitter::ReleaseRangeZ() {
   // Release restrictions on the Z range of the histogram to be used in the fit.

   fLowLimitZ = 1;
   fHighLimitZ = fData->GetNbinsZ();
   CheckConsistency();
}

//______________________________________________________________________________
void TFractionFitter::ExcludeBin(Int_t bin) {
   // Exclude the given bin from the fit. The bin numbering to be used is that
   // of TH1::GetBin().

   int excluded = fExcludedBins.size();
   for (int b = 0; b < excluded; ++b) {
      if (fExcludedBins[b] == bin) {
         Error("ExcludeBin", "bin %d already excluded", bin);
         return;
      }
   }
   fExcludedBins.push_back(bin);
   // This call serves to properly (re)determine the number of degrees of freeom
   CheckConsistency();
}

//______________________________________________________________________________
void TFractionFitter::IncludeBin(Int_t bin) {
   // Include the given bin in the fit, if it was excluded before using ExcludeBin().
   // The bin numbering to be used is that of TH1::GetBin().

   for (std::vector<Int_t>::iterator it = fExcludedBins.begin();
        it != fExcludedBins.end(); ++it) {
      if (*it == bin) {
         fExcludedBins.erase(it);
         // This call serves to properly (re)determine the number of degrees of freeom
         CheckConsistency();
         return;
      }
   }
   Error("IncludeBin", "bin %d was not excluded", bin);
}

//______________________________________________________________________________
bool TFractionFitter::IsExcluded(Int_t bin) const {
   // Function for internal use, checking whether the given bin is
   // excluded from the fit or not.

   for (unsigned int b = 0; b < fExcludedBins.size(); ++b)
      if (fExcludedBins[b] == bin) return true;
   return false;
}

//______________________________________________________________________________
void TFractionFitter::Constrain(Int_t parm, Double_t low, Double_t high) {
   // Constrain the values of parameter number <parm> (the parameter numbering
   // follows that of the input template vector).
   // Use UnConstrain() to remove this constraint.

   CheckParNo(parm);
   Double_t plist[3];
   plist[0] = (Double_t) parm;
   plist[1] = low;
   plist[2] = high;
   fractionFitter->ExecuteCommand("SET LIMIT", plist, 3);
}

//______________________________________________________________________________
void TFractionFitter::UnConstrain(Int_t parm) {
   // Remove the constraints on the possible values of parameter <parm>.

   CheckParNo(parm);
   Double_t plist[3];
   plist[0] = (Double_t) parm;
   plist[1] = 0;
   plist[2] = 0;
   fractionFitter->ExecuteCommand("SET LIMIT", plist, 3);
}

//______________________________________________________________________________
void TFractionFitter::CheckConsistency() {
   // Function used internally to check the consistency between the
   // various histograms. Checks are performed on nonexistent or empty
   // histograms, the precise histogram class, and the number of bins.
   // In addition, integrals over the "allowed" bin ranges are computed.
   // Any inconsistency results in a error.

   if (! fData) {
      Error("CheckConsistency","Nonexistent data histogram");
      return;
   }
   Int_t minX, maxX, minY, maxY, minZ, maxZ;
   Int_t x,y,z,par;
   GetRanges(minX, maxX, minY, maxY, minZ, maxZ);
   fIntegralData = 0;
   fNpfits = 0;
   for (z = minZ; z <= maxZ; ++z) {
      for (y = minY; y <= maxY; ++y) {
         for (x = minX; x <= maxX; ++x) {
            if (IsExcluded(fData->GetBin(x, y, z))) continue;
            fNpfits++;
            fIntegralData += fData->GetBinContent(x, y, z);
         }
      }
   }
   if (fIntegralData <= 0) {
      Error("CheckConsistency","Empty data histogram");
      return;
   }
   TClass* cl = fData->Class();

   fNDF = fNpfits - fNpar;

   if (fNpar < 2) {
      Error("CheckConsistency","Need at least two MC histograms");
      return;
   }

   for (par = 0; par < fNpar; ++par) {
      TH1 *h = (TH1*)fMCs.At(par);
      if (! h) {
         Error("CheckConsistency","Nonexistent MC histogram for source #%d",par);
         return;
      }
      if ((! h->Class()->InheritsFrom(cl)) || h->GetNbinsX() != fData->GetNbinsX() ||
          (fData->GetDimension() > 1 && h->GetNbinsY() != fData->GetNbinsY()) ||
          (fData->GetDimension() > 2 && h->GetNbinsZ() != fData->GetNbinsZ())) {
         Error("CheckConsistency","Histogram inconsistency for source #%d",par);
         return;
      }
      fIntegralMCs[par] = 0;
      for (z = minZ; z <= maxZ; ++z) {
         for (y = minY; y <= maxY; ++y) {
            for (x = minX; x <= maxX; ++x) {
               Int_t bin = fData->GetBin(x, y, z);
               if (IsExcluded(bin)) continue;
               Double_t MCEvents = h->GetBinContent(bin);
               if (MCEvents < 0) {
                  Error("CheckConsistency", "Number of MC events (bin = %d, par = %d) cannot be negative: "
                        " their distribution is binomial (see paper)", bin, par);
               }
               fIntegralMCs[par] += MCEvents;
            }
         }
      }
      if (fIntegralMCs[par] <= 0) {
         Error("CheckConsistency","Empty MC histogram #%d",par);
      }
   }
}

//______________________________________________________________________________
Int_t TFractionFitter::Fit() {
   // Perform the fit with the default UP value.
   // The value returned is the minimisation status.

   Double_t plist[1];
   plist[0] = 0.5;
   // set the UP value to 0.5
   fractionFitter->ExecuteCommand("SET ERRDEF",plist,1);

   // remove any existing output histogram
   if (fPlot) {
      delete fPlot; fPlot = 0;
   }

   // Make sure the correct likelihood computation is used
   fractionFitter->SetObjectFit(this);

   // fit
   Int_t status = fractionFitter->ExecuteCommand("MINIMIZE",0,0);
   if (status == 0) fFitDone = kTRUE;

   // determine goodness of fit
   ComputeChisquareLambda();

   return status;
}

//______________________________________________________________________________
void TFractionFitter::ErrorAnalysis(Double_t UP) {
   // Set UP to the given value (see class TMinuit), and perform a MINOS minimisation.

   if (! fFitDone) {
      Error("ErrorAnalysis","Fit not yet performed");
      return;
   }

   // Make sure the correct likelihood computation is used
   fractionFitter->SetObjectFit(this);

   Double_t plist[1];
   plist[0] = UP > 0 ? UP : 0.5;
   fractionFitter->ExecuteCommand("SET ERRDEF",plist,1);
   Int_t status = fractionFitter->ExecuteCommand("MINOS",0,0);
   if (status != 0) {
      Error("ErrorAnalysis","Error return from MINOS: %d",status);
   }
}

//______________________________________________________________________________
void TFractionFitter::GetResult(Int_t parm, Double_t& value, Double_t& error) const {
   // Obtain the fit result for parameter <parm> (the parameter numbering
   // follows that of the input template vector).

   CheckParNo(parm);
   if (! fFitDone) {
      Error("GetResult","Fit not yet performed");
      return;
   }
   char parname[100];
   Double_t vlow, vhigh;

   fractionFitter->GetParameter(parm, parname, value, error, vlow, vhigh);
}

//______________________________________________________________________________
TH1* TFractionFitter::GetPlot() {
   // Return the "template prediction" corresponding to the fit result (this is not
   // the same as the weighted sum of template distributions, as template statistical
   // uncertainties are taken into account).
   // Note that the name of this histogram will simply be the same as that of the
   // "data" histogram, prefixed with the string "Fraction fit to hist: ".

   if (! fFitDone) {
      Error("GetPlot","Fit not yet performed");
      return 0;
   }
   if (! fPlot) {
      Double_t plist[1];
      plist[0] = 3;
      fractionFitter->ExecuteCommand("CALL FCN", plist, 1);
   }
   return fPlot;
}

//______________________________________________________________________________
void TFractionFitter::GetRanges(Int_t& minX, Int_t& maxX, Int_t& minY, Int_t& maxY,
                                Int_t& minZ, Int_t& maxZ) const {
   // Used internally to obtain the bin ranges according to the dimensionality of
   // the histogram and the limits set by hand.

   if (fData->GetDimension() < 2) {
      minY = maxY = minZ = maxZ = 0;
      minX = fLowLimitX;
      maxX = fHighLimitX;
   } else if (fData->GetDimension() < 3) {
      minZ = maxZ = 0;
      minX = fLowLimitX;
      maxX = fHighLimitX;
      minY = fLowLimitY;
      maxY = fHighLimitY;
   } else {
      minX = fLowLimitX;
      maxX = fHighLimitX;
      minY = fLowLimitY;
      maxY = fHighLimitY;
      minZ = fLowLimitZ;
      maxZ = fHighLimitZ;
   }
}

//______________________________________________________________________________
void TFractionFitter::ComputeFCN(Int_t& /*npar*/, Double_t* /*gin*/,
                                 Double_t& f, Double_t* xx, Int_t flag)
{
   // Used internally to compute the likelihood value.

   // normalise the fit parameters
   Int_t bin, mc;
   Int_t minX, maxX, minY, maxY, minZ, maxZ;
   Int_t x,y,z;
   GetRanges(minX, maxX, minY, maxY, minZ, maxZ);
   for (mc = 0; mc < fNpar; ++mc) {
      Double_t tot;
      TH1 *h  = (TH1*)fMCs[mc];
      TH1 *hw = (TH1*)fWeights[mc];
      if (hw) {
         tot = 0;
         for (z = minZ; z <= maxZ; ++z) {
            for (y = minY; y <= maxY; ++y) {
               for (x = minX; x <= maxX; ++x) {
                  if (IsExcluded(fData->GetBin(x, y, z))) continue;
                  Double_t weight = hw->GetBinContent(x, y, z);
                  if (weight <= 0) {
                     Error("ComputeFCN","Invalid weight encountered for MC source %d",mc);
                     return;
                  }
                  tot += weight * h->GetBinContent(x, y, z);
               }
            }
         }
      } else tot = fIntegralMCs[mc];
      fFractions[mc] = xx[mc] * fIntegralData / tot;
   }

   if (flag == 3) {
      TString ts = "Fraction fit to hist: "; ts += fData->GetName();
      fPlot = (TH1*) fData->Clone(ts.Data());
      fPlot->Reset();
   }
   // likelihood computation
   Double_t result = 0;
   for (z = minZ; z <= maxZ; ++z) {
      for (y = minY; y <= maxY; ++y) {
         for (x = minX; x <= maxX; ++x) {
            bin = fData->GetBin(x, y, z);
            if (IsExcluded(bin)) continue;

            // Solve for the "predictions"
            int k0 = 0;
            Double_t ti = 0.0; Double_t aki = 0.0;
            FindPrediction(bin, ti, k0, aki);

            Double_t prediction = 0;
            for (mc = 0; mc < fNpar; ++mc) {
               TH1 *h  = (TH1*)fMCs[mc];
               TH1 *hw = (TH1*)fWeights[mc];
               Double_t binPrediction;
               Double_t binContent = h->GetBinContent(bin);
               Double_t weight = hw ? hw->GetBinContent(bin) : 1;
               if (k0 >= 0 && fFractions[mc] == fFractions[k0]) {
                  binPrediction = aki;
               } else {
                  binPrediction = binContent > 0 ? binContent / (1+weight*fFractions[mc]*ti) : 0;
               }

               prediction += fFractions[mc]*weight*binPrediction;
               result -= binPrediction;
               if (binContent > 0 && binPrediction > 0)
                  result += binContent*TMath::Log(binPrediction);

               if (flag == 3) {
                  ((TH1*)fAji.At(mc))->SetBinContent(bin, binPrediction);
               }
            }

            if (flag == 3) {
               fPlot->SetBinContent(bin, prediction);
            }

            result -= prediction;
            Double_t found = fData->GetBinContent(bin);
            if (found > 0 && prediction > 0)
               result += found*TMath::Log(prediction);
         }
      }
   }

   f = -result;
}

//______________________________________________________________________________
void TFractionFitter::FindPrediction(int bin, Double_t &t_i, int& k_0, Double_t &A_ki) const {
   // Function used internally to obtain the template prediction in the individual bins
   // 'bin' <=> 'i' (paper)
   // 'par' <=> 'j' (paper)

   std::vector<Double_t> wgtFrac(fNpar); // weighted fractions (strengths of the sources)
   std::vector<Double_t> a_ji(fNpar); // number of observed MC events for bin 'i' and par (source) 'j'
   Double_t d_i = fData->GetBinContent(bin); // number of events in the real data for bin 'i'

   // Cache the weighted fractions and the number of observed MC events
   // Sanity check: none of the fractions should be == 0
   for (Int_t par = 0; par < fNpar; ++par) {
      a_ji[par] = ((TH1*)fMCs.At(par))->GetBinContent(bin);
      TH1* hw = (TH1*)fWeights.At(par);
      wgtFrac[par] = hw ? hw->GetBinContent(bin) * fFractions[par] : fFractions[par];
      if (wgtFrac[par] == 0) {
         Error("FindPrediction", "Fraction[%d] = 0!", par);
         return;
      }
   }

   // Case data = 0
   if (TMath::Nint(d_i) == 0) {
      t_i = 1;
      k_0 = -1;
      A_ki = 0;
      return;
   }

   // Case one or more of the MC bin contents == 0 -> find largest fraction
   // k_0 stores the source index of the largest fraction
   k_0 = 0;
   Double_t maxWgtFrac = wgtFrac[0];
   for (Int_t par = 1; par < fNpar; ++par) {
      if (wgtFrac[par] > maxWgtFrac) {
         k_0 = par;
         maxWgtFrac = wgtFrac[par];
      }
   }
   Double_t t_min = -1 / maxWgtFrac; // t_i cannot be smaller than this value (see paper, par 5)

   // Determine if there are more sources which have the same maximum contribution (fraction)
   Int_t nMax = 1; Double_t contentsMax = a_ji[k_0];
   for (Int_t par = 0; par < fNpar; ++par) {
      if (par == k_0) continue;
      if (wgtFrac[par] == maxWgtFrac) {
         nMax++;
         contentsMax += a_ji[par];
      }
   }

   // special action if there is a zero in the number of entries for the MC source with
   // the largest strength (fraction) -> See Paper, Paragraph 5
   if (contentsMax == 0) {
      A_ki = d_i / (1.0 + maxWgtFrac);
      for (Int_t par = 0; par < fNpar; ++par) {
         if (par == k_0 || wgtFrac[par] == maxWgtFrac) continue;
         A_ki -= a_ji[par] * wgtFrac[par] / (maxWgtFrac - wgtFrac[par]);
      }
      if (A_ki > 0) {
         A_ki /= nMax;
         t_i = t_min;
         return;
      }
   }
   k_0 = -1;

   // Case of nonzero histogram contents: solve for t_i using Newton's method
   // The equation that needs to be solved:
   //    func(t_i) = \sum\limits_j{\frac{ p_j a_{ji} }{1 + p_j t_i}} - \frac{d_i}{1 - t_i} = 0
   t_i = 0; Double_t step = 0.2;
   Int_t maxIter = 100000; // maximum number of iterations
   for(Int_t i = 0; i < maxIter; ++i) {
      if (t_i >= 1 || t_i < t_min) {
         step /= 10;
         t_i = 0;
      }
      Double_t func   = - d_i / (1.0 - t_i);
      Double_t deriv = func / (1.0 - t_i);
      for (Int_t par = 0; par < fNpar; ++par) {
         Double_t r = 1.0 / (t_i + 1.0 / wgtFrac[par]);
         func   += a_ji[par] * r;
         deriv -= a_ji[par] * r * r;
      }
      if (TMath::Abs(func) < 1e-12) return; // solution found
      Double_t delta = - func / deriv; // update delta
      if (TMath::Abs(delta) > step)
         delta = (delta > 0) ? step : -step; // correct delta if it becomes too large
      t_i += delta;
      if (TMath::Abs(delta) < 1e-13) return; // solution found
   } // the loop breaks when the solution is found, or when the maximum number of iterations is exhausted

   Warning("FindPrediction", "Did not find solution for t_i in %d iterations", maxIter);

   return;
}


//______________________________________________________________________________
void TFractionFitFCN(Int_t& npar, Double_t* gin, Double_t& f, Double_t* par, Int_t flag) {
   // Function called by the minimisation package. The actual functionality is passed
   // on to the TFractionFitter::ComputeFCN member function.

   TFractionFitter* fitter = dynamic_cast<TFractionFitter*>(fractionFitter->GetObjectFit());
   if (!fitter) {
      Error("TFractionFitFCN","Invalid fit object encountered!");
      return;
   }
   fitter->ComputeFCN(npar, gin, f, par, flag);
}


//______________________________________________________________________________
Double_t TFractionFitter::GetChisquare() const
{
   // Return the likelihood ratio Chi-squared (chi2) for the fit.
   // The value is computed when the fit is executed successfully.
   // Chi2 calculation is based on the "likelihood ratio" lambda,
   // lambda = L(y;n) / L(m;n),
   // where L(y;n) is the likelihood of the fit result <y> describing the data <n>
   // and L(m;n) is the likelihood of an unknown "true" underlying distribution
   // <m> describing the data <n>. Since <m> is unknown, the data distribution is
   // used instead,
   // lambda = L(y;n) / L(n;n).
   // Note that this ratio is 1 if the fit is perfect. The chi2 value is then
   // computed according to
   // chi2 = -2*ln(lambda).
   // This parameter can be shown to follow a Chi-square distribution. See for
   // example S. Baker and R. Cousins, "Clarification of the use of chi-square
   // and likelihood functions in fits to histograms", Nucl. Instr. Meth. A221,
   // pp. 437-442 (1984)

   return fChisquare;
}

//______________________________________________________________________________
Int_t TFractionFitter::GetNDF() const
{
   // return the number of degrees of freedom in the fit
   // the fNDF parameter has been previously computed during a fit.
   // The number of degrees of freedom corresponds to the number of points
   // used in the fit minus the number of templates.

   if (fNDF == 0) return fNpfits-fNpar;
   return fNDF;
}

//______________________________________________________________________________
Double_t TFractionFitter::GetProb() const
{
   // return the fit probability

   Int_t ndf = fNpfits - fNpar;
   if (ndf <= 0) return 0;
   return TMath::Prob(fChisquare,ndf);
}

//______________________________________________________________________________
void TFractionFitter::ComputeChisquareLambda()
{
   // Method used internally to compute the likelihood ratio chi2
   // See the function GetChisquare() for details

   if ( !fFitDone ) {
      Error("ComputeChisquareLambda","Fit not yet (successfully) performed");
      fChisquare = 0;
      return;
   }

   // fPlot must be initialized and filled. Leave this to the GetPlot() method.
   if (! fPlot)
      GetPlot();

   Int_t minX, maxX, minY, maxY, minZ, maxZ;
   GetRanges(minX, maxX, minY, maxY, minZ, maxZ);

   Double_t logLyn = 0; // likelihood of prediction
   Double_t logLmn = 0; // likelihood of data ("true" distribution)
   for(Int_t x = minX; x <= maxX; x++) {
      for(Int_t y = minY; y <= maxY; y++) {
         for(Int_t z = minZ; z <= maxZ; z++) {
            if (IsExcluded(fData->GetBin(x, y, z))) continue;
            Double_t di = fData->GetBinContent(x, y, z);
            Double_t fi = fPlot->GetBinContent(x, y, z);
            if(fi != 0) logLyn += di * TMath::Log(fi) - fi;
            if(di != 0) logLmn += di * TMath::Log(di) - di;
            for(Int_t j = 0; j < fNpar; j++) {
               Double_t aji = ((TH1*)fMCs.At(j))->GetBinContent(x, y, z);
               Double_t bji = ((TH1*)fAji.At(j))->GetBinContent(x, y, z);
               if(bji != 0) logLyn += aji * TMath::Log(bji) - bji;
               if(aji != 0) logLmn += aji * TMath::Log(aji) - aji;
            }
         }
      }
   }

   fChisquare = -2*logLyn + 2*logLmn;

   return;
}

//______________________________________________________________________________
TH1* TFractionFitter::GetMCPrediction(Int_t parm) const
{
   // Return the adjusted MC template (Aji) for template (parm).
   // Note that the (Aji) times fractions only sum to the total prediction
   // of the fit if all weights are 1.
   
   CheckParNo(parm);
   if ( !fFitDone ) {
      Error("GetMCPrediction","Fit not yet performed");
      return 0;
   }
   return (TH1*) fAji.At(parm);
}
 TFractionFitter.cxx:1
 TFractionFitter.cxx:2
 TFractionFitter.cxx:3
 TFractionFitter.cxx:4
 TFractionFitter.cxx:5
 TFractionFitter.cxx:6
 TFractionFitter.cxx:7
 TFractionFitter.cxx:8
 TFractionFitter.cxx:9
 TFractionFitter.cxx:10
 TFractionFitter.cxx:11
 TFractionFitter.cxx:12
 TFractionFitter.cxx:13
 TFractionFitter.cxx:14
 TFractionFitter.cxx:15
 TFractionFitter.cxx:16
 TFractionFitter.cxx:17
 TFractionFitter.cxx:18
 TFractionFitter.cxx:19
 TFractionFitter.cxx:20
 TFractionFitter.cxx:21
 TFractionFitter.cxx:22
 TFractionFitter.cxx:23
 TFractionFitter.cxx:24
 TFractionFitter.cxx:25
 TFractionFitter.cxx:26
 TFractionFitter.cxx:27
 TFractionFitter.cxx:28
 TFractionFitter.cxx:29
 TFractionFitter.cxx:30
 TFractionFitter.cxx:31
 TFractionFitter.cxx:32
 TFractionFitter.cxx:33
 TFractionFitter.cxx:34
 TFractionFitter.cxx:35
 TFractionFitter.cxx:36
 TFractionFitter.cxx:37
 TFractionFitter.cxx:38
 TFractionFitter.cxx:39
 TFractionFitter.cxx:40
 TFractionFitter.cxx:41
 TFractionFitter.cxx:42
 TFractionFitter.cxx:43
 TFractionFitter.cxx:44
 TFractionFitter.cxx:45
 TFractionFitter.cxx:46
 TFractionFitter.cxx:47
 TFractionFitter.cxx:48
 TFractionFitter.cxx:49
 TFractionFitter.cxx:50
 TFractionFitter.cxx:51
 TFractionFitter.cxx:52
 TFractionFitter.cxx:53
 TFractionFitter.cxx:54
 TFractionFitter.cxx:55
 TFractionFitter.cxx:56
 TFractionFitter.cxx:57
 TFractionFitter.cxx:58
 TFractionFitter.cxx:59
 TFractionFitter.cxx:60
 TFractionFitter.cxx:61
 TFractionFitter.cxx:62
 TFractionFitter.cxx:63
 TFractionFitter.cxx:64
 TFractionFitter.cxx:65
 TFractionFitter.cxx:66
 TFractionFitter.cxx:67
 TFractionFitter.cxx:68
 TFractionFitter.cxx:69
 TFractionFitter.cxx:70
 TFractionFitter.cxx:71
 TFractionFitter.cxx:72
 TFractionFitter.cxx:73
 TFractionFitter.cxx:74
 TFractionFitter.cxx:75
 TFractionFitter.cxx:76
 TFractionFitter.cxx:77
 TFractionFitter.cxx:78
 TFractionFitter.cxx:79
 TFractionFitter.cxx:80
 TFractionFitter.cxx:81
 TFractionFitter.cxx:82
 TFractionFitter.cxx:83
 TFractionFitter.cxx:84
 TFractionFitter.cxx:85
 TFractionFitter.cxx:86
 TFractionFitter.cxx:87
 TFractionFitter.cxx:88
 TFractionFitter.cxx:89
 TFractionFitter.cxx:90
 TFractionFitter.cxx:91
 TFractionFitter.cxx:92
 TFractionFitter.cxx:93
 TFractionFitter.cxx:94
 TFractionFitter.cxx:95
 TFractionFitter.cxx:96
 TFractionFitter.cxx:97
 TFractionFitter.cxx:98
 TFractionFitter.cxx:99
 TFractionFitter.cxx:100
 TFractionFitter.cxx:101
 TFractionFitter.cxx:102
 TFractionFitter.cxx:103
 TFractionFitter.cxx:104
 TFractionFitter.cxx:105
 TFractionFitter.cxx:106
 TFractionFitter.cxx:107
 TFractionFitter.cxx:108
 TFractionFitter.cxx:109
 TFractionFitter.cxx:110
 TFractionFitter.cxx:111
 TFractionFitter.cxx:112
 TFractionFitter.cxx:113
 TFractionFitter.cxx:114
 TFractionFitter.cxx:115
 TFractionFitter.cxx:116
 TFractionFitter.cxx:117
 TFractionFitter.cxx:118
 TFractionFitter.cxx:119
 TFractionFitter.cxx:120
 TFractionFitter.cxx:121
 TFractionFitter.cxx:122
 TFractionFitter.cxx:123
 TFractionFitter.cxx:124
 TFractionFitter.cxx:125
 TFractionFitter.cxx:126
 TFractionFitter.cxx:127
 TFractionFitter.cxx:128
 TFractionFitter.cxx:129
 TFractionFitter.cxx:130
 TFractionFitter.cxx:131
 TFractionFitter.cxx:132
 TFractionFitter.cxx:133
 TFractionFitter.cxx:134
 TFractionFitter.cxx:135
 TFractionFitter.cxx:136
 TFractionFitter.cxx:137
 TFractionFitter.cxx:138
 TFractionFitter.cxx:139
 TFractionFitter.cxx:140
 TFractionFitter.cxx:141
 TFractionFitter.cxx:142
 TFractionFitter.cxx:143
 TFractionFitter.cxx:144
 TFractionFitter.cxx:145
 TFractionFitter.cxx:146
 TFractionFitter.cxx:147
 TFractionFitter.cxx:148
 TFractionFitter.cxx:149
 TFractionFitter.cxx:150
 TFractionFitter.cxx:151
 TFractionFitter.cxx:152
 TFractionFitter.cxx:153
 TFractionFitter.cxx:154
 TFractionFitter.cxx:155
 TFractionFitter.cxx:156
 TFractionFitter.cxx:157
 TFractionFitter.cxx:158
 TFractionFitter.cxx:159
 TFractionFitter.cxx:160
 TFractionFitter.cxx:161
 TFractionFitter.cxx:162
 TFractionFitter.cxx:163
 TFractionFitter.cxx:164
 TFractionFitter.cxx:165
 TFractionFitter.cxx:166
 TFractionFitter.cxx:167
 TFractionFitter.cxx:168
 TFractionFitter.cxx:169
 TFractionFitter.cxx:170
 TFractionFitter.cxx:171
 TFractionFitter.cxx:172
 TFractionFitter.cxx:173
 TFractionFitter.cxx:174
 TFractionFitter.cxx:175
 TFractionFitter.cxx:176
 TFractionFitter.cxx:177
 TFractionFitter.cxx:178
 TFractionFitter.cxx:179
 TFractionFitter.cxx:180
 TFractionFitter.cxx:181
 TFractionFitter.cxx:182
 TFractionFitter.cxx:183
 TFractionFitter.cxx:184
 TFractionFitter.cxx:185
 TFractionFitter.cxx:186
 TFractionFitter.cxx:187
 TFractionFitter.cxx:188
 TFractionFitter.cxx:189
 TFractionFitter.cxx:190
 TFractionFitter.cxx:191
 TFractionFitter.cxx:192
 TFractionFitter.cxx:193
 TFractionFitter.cxx:194
 TFractionFitter.cxx:195
 TFractionFitter.cxx:196
 TFractionFitter.cxx:197
 TFractionFitter.cxx:198
 TFractionFitter.cxx:199
 TFractionFitter.cxx:200
 TFractionFitter.cxx:201
 TFractionFitter.cxx:202
 TFractionFitter.cxx:203
 TFractionFitter.cxx:204
 TFractionFitter.cxx:205
 TFractionFitter.cxx:206
 TFractionFitter.cxx:207
 TFractionFitter.cxx:208
 TFractionFitter.cxx:209
 TFractionFitter.cxx:210
 TFractionFitter.cxx:211
 TFractionFitter.cxx:212
 TFractionFitter.cxx:213
 TFractionFitter.cxx:214
 TFractionFitter.cxx:215
 TFractionFitter.cxx:216
 TFractionFitter.cxx:217
 TFractionFitter.cxx:218
 TFractionFitter.cxx:219
 TFractionFitter.cxx:220
 TFractionFitter.cxx:221
 TFractionFitter.cxx:222
 TFractionFitter.cxx:223
 TFractionFitter.cxx:224
 TFractionFitter.cxx:225
 TFractionFitter.cxx:226
 TFractionFitter.cxx:227
 TFractionFitter.cxx:228
 TFractionFitter.cxx:229
 TFractionFitter.cxx:230
 TFractionFitter.cxx:231
 TFractionFitter.cxx:232
 TFractionFitter.cxx:233
 TFractionFitter.cxx:234
 TFractionFitter.cxx:235
 TFractionFitter.cxx:236
 TFractionFitter.cxx:237
 TFractionFitter.cxx:238
 TFractionFitter.cxx:239
 TFractionFitter.cxx:240
 TFractionFitter.cxx:241
 TFractionFitter.cxx:242
 TFractionFitter.cxx:243
 TFractionFitter.cxx:244
 TFractionFitter.cxx:245
 TFractionFitter.cxx:246
 TFractionFitter.cxx:247
 TFractionFitter.cxx:248
 TFractionFitter.cxx:249
 TFractionFitter.cxx:250
 TFractionFitter.cxx:251
 TFractionFitter.cxx:252
 TFractionFitter.cxx:253
 TFractionFitter.cxx:254
 TFractionFitter.cxx:255
 TFractionFitter.cxx:256
 TFractionFitter.cxx:257
 TFractionFitter.cxx:258
 TFractionFitter.cxx:259
 TFractionFitter.cxx:260
 TFractionFitter.cxx:261
 TFractionFitter.cxx:262
 TFractionFitter.cxx:263
 TFractionFitter.cxx:264
 TFractionFitter.cxx:265
 TFractionFitter.cxx:266
 TFractionFitter.cxx:267
 TFractionFitter.cxx:268
 TFractionFitter.cxx:269
 TFractionFitter.cxx:270
 TFractionFitter.cxx:271
 TFractionFitter.cxx:272
 TFractionFitter.cxx:273
 TFractionFitter.cxx:274
 TFractionFitter.cxx:275
 TFractionFitter.cxx:276
 TFractionFitter.cxx:277
 TFractionFitter.cxx:278
 TFractionFitter.cxx:279
 TFractionFitter.cxx:280
 TFractionFitter.cxx:281
 TFractionFitter.cxx:282
 TFractionFitter.cxx:283
 TFractionFitter.cxx:284
 TFractionFitter.cxx:285
 TFractionFitter.cxx:286
 TFractionFitter.cxx:287
 TFractionFitter.cxx:288
 TFractionFitter.cxx:289
 TFractionFitter.cxx:290
 TFractionFitter.cxx:291
 TFractionFitter.cxx:292
 TFractionFitter.cxx:293
 TFractionFitter.cxx:294
 TFractionFitter.cxx:295
 TFractionFitter.cxx:296
 TFractionFitter.cxx:297
 TFractionFitter.cxx:298
 TFractionFitter.cxx:299
 TFractionFitter.cxx:300
 TFractionFitter.cxx:301
 TFractionFitter.cxx:302
 TFractionFitter.cxx:303
 TFractionFitter.cxx:304
 TFractionFitter.cxx:305
 TFractionFitter.cxx:306
 TFractionFitter.cxx:307
 TFractionFitter.cxx:308
 TFractionFitter.cxx:309
 TFractionFitter.cxx:310
 TFractionFitter.cxx:311
 TFractionFitter.cxx:312
 TFractionFitter.cxx:313
 TFractionFitter.cxx:314
 TFractionFitter.cxx:315
 TFractionFitter.cxx:316
 TFractionFitter.cxx:317
 TFractionFitter.cxx:318
 TFractionFitter.cxx:319
 TFractionFitter.cxx:320
 TFractionFitter.cxx:321
 TFractionFitter.cxx:322
 TFractionFitter.cxx:323
 TFractionFitter.cxx:324
 TFractionFitter.cxx:325
 TFractionFitter.cxx:326
 TFractionFitter.cxx:327
 TFractionFitter.cxx:328
 TFractionFitter.cxx:329
 TFractionFitter.cxx:330
 TFractionFitter.cxx:331
 TFractionFitter.cxx:332
 TFractionFitter.cxx:333
 TFractionFitter.cxx:334
 TFractionFitter.cxx:335
 TFractionFitter.cxx:336
 TFractionFitter.cxx:337
 TFractionFitter.cxx:338
 TFractionFitter.cxx:339
 TFractionFitter.cxx:340
 TFractionFitter.cxx:341
 TFractionFitter.cxx:342
 TFractionFitter.cxx:343
 TFractionFitter.cxx:344
 TFractionFitter.cxx:345
 TFractionFitter.cxx:346
 TFractionFitter.cxx:347
 TFractionFitter.cxx:348
 TFractionFitter.cxx:349
 TFractionFitter.cxx:350
 TFractionFitter.cxx:351
 TFractionFitter.cxx:352
 TFractionFitter.cxx:353
 TFractionFitter.cxx:354
 TFractionFitter.cxx:355
 TFractionFitter.cxx:356
 TFractionFitter.cxx:357
 TFractionFitter.cxx:358
 TFractionFitter.cxx:359
 TFractionFitter.cxx:360
 TFractionFitter.cxx:361
 TFractionFitter.cxx:362
 TFractionFitter.cxx:363
 TFractionFitter.cxx:364
 TFractionFitter.cxx:365
 TFractionFitter.cxx:366
 TFractionFitter.cxx:367
 TFractionFitter.cxx:368
 TFractionFitter.cxx:369
 TFractionFitter.cxx:370
 TFractionFitter.cxx:371
 TFractionFitter.cxx:372
 TFractionFitter.cxx:373
 TFractionFitter.cxx:374
 TFractionFitter.cxx:375
 TFractionFitter.cxx:376
 TFractionFitter.cxx:377
 TFractionFitter.cxx:378
 TFractionFitter.cxx:379
 TFractionFitter.cxx:380
 TFractionFitter.cxx:381
 TFractionFitter.cxx:382
 TFractionFitter.cxx:383
 TFractionFitter.cxx:384
 TFractionFitter.cxx:385
 TFractionFitter.cxx:386
 TFractionFitter.cxx:387
 TFractionFitter.cxx:388
 TFractionFitter.cxx:389
 TFractionFitter.cxx:390
 TFractionFitter.cxx:391
 TFractionFitter.cxx:392
 TFractionFitter.cxx:393
 TFractionFitter.cxx:394
 TFractionFitter.cxx:395
 TFractionFitter.cxx:396
 TFractionFitter.cxx:397
 TFractionFitter.cxx:398
 TFractionFitter.cxx:399
 TFractionFitter.cxx:400
 TFractionFitter.cxx:401
 TFractionFitter.cxx:402
 TFractionFitter.cxx:403
 TFractionFitter.cxx:404
 TFractionFitter.cxx:405
 TFractionFitter.cxx:406
 TFractionFitter.cxx:407
 TFractionFitter.cxx:408
 TFractionFitter.cxx:409
 TFractionFitter.cxx:410
 TFractionFitter.cxx:411
 TFractionFitter.cxx:412
 TFractionFitter.cxx:413
 TFractionFitter.cxx:414
 TFractionFitter.cxx:415
 TFractionFitter.cxx:416
 TFractionFitter.cxx:417
 TFractionFitter.cxx:418
 TFractionFitter.cxx:419
 TFractionFitter.cxx:420
 TFractionFitter.cxx:421
 TFractionFitter.cxx:422
 TFractionFitter.cxx:423
 TFractionFitter.cxx:424
 TFractionFitter.cxx:425
 TFractionFitter.cxx:426
 TFractionFitter.cxx:427
 TFractionFitter.cxx:428
 TFractionFitter.cxx:429
 TFractionFitter.cxx:430
 TFractionFitter.cxx:431
 TFractionFitter.cxx:432
 TFractionFitter.cxx:433
 TFractionFitter.cxx:434
 TFractionFitter.cxx:435
 TFractionFitter.cxx:436
 TFractionFitter.cxx:437
 TFractionFitter.cxx:438
 TFractionFitter.cxx:439
 TFractionFitter.cxx:440
 TFractionFitter.cxx:441
 TFractionFitter.cxx:442
 TFractionFitter.cxx:443
 TFractionFitter.cxx:444
 TFractionFitter.cxx:445
 TFractionFitter.cxx:446
 TFractionFitter.cxx:447
 TFractionFitter.cxx:448
 TFractionFitter.cxx:449
 TFractionFitter.cxx:450
 TFractionFitter.cxx:451
 TFractionFitter.cxx:452
 TFractionFitter.cxx:453
 TFractionFitter.cxx:454
 TFractionFitter.cxx:455
 TFractionFitter.cxx:456
 TFractionFitter.cxx:457
 TFractionFitter.cxx:458
 TFractionFitter.cxx:459
 TFractionFitter.cxx:460
 TFractionFitter.cxx:461
 TFractionFitter.cxx:462
 TFractionFitter.cxx:463
 TFractionFitter.cxx:464
 TFractionFitter.cxx:465
 TFractionFitter.cxx:466
 TFractionFitter.cxx:467
 TFractionFitter.cxx:468
 TFractionFitter.cxx:469
 TFractionFitter.cxx:470
 TFractionFitter.cxx:471
 TFractionFitter.cxx:472
 TFractionFitter.cxx:473
 TFractionFitter.cxx:474
 TFractionFitter.cxx:475
 TFractionFitter.cxx:476
 TFractionFitter.cxx:477
 TFractionFitter.cxx:478
 TFractionFitter.cxx:479
 TFractionFitter.cxx:480
 TFractionFitter.cxx:481
 TFractionFitter.cxx:482
 TFractionFitter.cxx:483
 TFractionFitter.cxx:484
 TFractionFitter.cxx:485
 TFractionFitter.cxx:486
 TFractionFitter.cxx:487
 TFractionFitter.cxx:488
 TFractionFitter.cxx:489
 TFractionFitter.cxx:490
 TFractionFitter.cxx:491
 TFractionFitter.cxx:492
 TFractionFitter.cxx:493
 TFractionFitter.cxx:494
 TFractionFitter.cxx:495
 TFractionFitter.cxx:496
 TFractionFitter.cxx:497
 TFractionFitter.cxx:498
 TFractionFitter.cxx:499
 TFractionFitter.cxx:500
 TFractionFitter.cxx:501
 TFractionFitter.cxx:502
 TFractionFitter.cxx:503
 TFractionFitter.cxx:504
 TFractionFitter.cxx:505
 TFractionFitter.cxx:506
 TFractionFitter.cxx:507
 TFractionFitter.cxx:508
 TFractionFitter.cxx:509
 TFractionFitter.cxx:510
 TFractionFitter.cxx:511
 TFractionFitter.cxx:512
 TFractionFitter.cxx:513
 TFractionFitter.cxx:514
 TFractionFitter.cxx:515
 TFractionFitter.cxx:516
 TFractionFitter.cxx:517
 TFractionFitter.cxx:518
 TFractionFitter.cxx:519
 TFractionFitter.cxx:520
 TFractionFitter.cxx:521
 TFractionFitter.cxx:522
 TFractionFitter.cxx:523
 TFractionFitter.cxx:524
 TFractionFitter.cxx:525
 TFractionFitter.cxx:526
 TFractionFitter.cxx:527
 TFractionFitter.cxx:528
 TFractionFitter.cxx:529
 TFractionFitter.cxx:530
 TFractionFitter.cxx:531
 TFractionFitter.cxx:532
 TFractionFitter.cxx:533
 TFractionFitter.cxx:534
 TFractionFitter.cxx:535
 TFractionFitter.cxx:536
 TFractionFitter.cxx:537
 TFractionFitter.cxx:538
 TFractionFitter.cxx:539
 TFractionFitter.cxx:540
 TFractionFitter.cxx:541
 TFractionFitter.cxx:542
 TFractionFitter.cxx:543
 TFractionFitter.cxx:544
 TFractionFitter.cxx:545
 TFractionFitter.cxx:546
 TFractionFitter.cxx:547
 TFractionFitter.cxx:548
 TFractionFitter.cxx:549
 TFractionFitter.cxx:550
 TFractionFitter.cxx:551
 TFractionFitter.cxx:552
 TFractionFitter.cxx:553
 TFractionFitter.cxx:554
 TFractionFitter.cxx:555
 TFractionFitter.cxx:556
 TFractionFitter.cxx:557
 TFractionFitter.cxx:558
 TFractionFitter.cxx:559
 TFractionFitter.cxx:560
 TFractionFitter.cxx:561
 TFractionFitter.cxx:562
 TFractionFitter.cxx:563
 TFractionFitter.cxx:564
 TFractionFitter.cxx:565
 TFractionFitter.cxx:566
 TFractionFitter.cxx:567
 TFractionFitter.cxx:568
 TFractionFitter.cxx:569
 TFractionFitter.cxx:570
 TFractionFitter.cxx:571
 TFractionFitter.cxx:572
 TFractionFitter.cxx:573
 TFractionFitter.cxx:574
 TFractionFitter.cxx:575
 TFractionFitter.cxx:576
 TFractionFitter.cxx:577
 TFractionFitter.cxx:578
 TFractionFitter.cxx:579
 TFractionFitter.cxx:580
 TFractionFitter.cxx:581
 TFractionFitter.cxx:582
 TFractionFitter.cxx:583
 TFractionFitter.cxx:584
 TFractionFitter.cxx:585
 TFractionFitter.cxx:586
 TFractionFitter.cxx:587
 TFractionFitter.cxx:588
 TFractionFitter.cxx:589
 TFractionFitter.cxx:590
 TFractionFitter.cxx:591
 TFractionFitter.cxx:592
 TFractionFitter.cxx:593
 TFractionFitter.cxx:594
 TFractionFitter.cxx:595
 TFractionFitter.cxx:596
 TFractionFitter.cxx:597
 TFractionFitter.cxx:598
 TFractionFitter.cxx:599
 TFractionFitter.cxx:600
 TFractionFitter.cxx:601
 TFractionFitter.cxx:602
 TFractionFitter.cxx:603
 TFractionFitter.cxx:604
 TFractionFitter.cxx:605
 TFractionFitter.cxx:606
 TFractionFitter.cxx:607
 TFractionFitter.cxx:608
 TFractionFitter.cxx:609
 TFractionFitter.cxx:610
 TFractionFitter.cxx:611
 TFractionFitter.cxx:612
 TFractionFitter.cxx:613
 TFractionFitter.cxx:614
 TFractionFitter.cxx:615
 TFractionFitter.cxx:616
 TFractionFitter.cxx:617
 TFractionFitter.cxx:618
 TFractionFitter.cxx:619
 TFractionFitter.cxx:620
 TFractionFitter.cxx:621
 TFractionFitter.cxx:622
 TFractionFitter.cxx:623
 TFractionFitter.cxx:624
 TFractionFitter.cxx:625
 TFractionFitter.cxx:626
 TFractionFitter.cxx:627
 TFractionFitter.cxx:628
 TFractionFitter.cxx:629
 TFractionFitter.cxx:630
 TFractionFitter.cxx:631
 TFractionFitter.cxx:632
 TFractionFitter.cxx:633
 TFractionFitter.cxx:634
 TFractionFitter.cxx:635
 TFractionFitter.cxx:636
 TFractionFitter.cxx:637
 TFractionFitter.cxx:638
 TFractionFitter.cxx:639
 TFractionFitter.cxx:640
 TFractionFitter.cxx:641
 TFractionFitter.cxx:642
 TFractionFitter.cxx:643
 TFractionFitter.cxx:644
 TFractionFitter.cxx:645
 TFractionFitter.cxx:646
 TFractionFitter.cxx:647
 TFractionFitter.cxx:648
 TFractionFitter.cxx:649
 TFractionFitter.cxx:650
 TFractionFitter.cxx:651
 TFractionFitter.cxx:652
 TFractionFitter.cxx:653
 TFractionFitter.cxx:654
 TFractionFitter.cxx:655
 TFractionFitter.cxx:656
 TFractionFitter.cxx:657
 TFractionFitter.cxx:658
 TFractionFitter.cxx:659
 TFractionFitter.cxx:660
 TFractionFitter.cxx:661
 TFractionFitter.cxx:662
 TFractionFitter.cxx:663
 TFractionFitter.cxx:664
 TFractionFitter.cxx:665
 TFractionFitter.cxx:666
 TFractionFitter.cxx:667
 TFractionFitter.cxx:668
 TFractionFitter.cxx:669
 TFractionFitter.cxx:670
 TFractionFitter.cxx:671
 TFractionFitter.cxx:672
 TFractionFitter.cxx:673
 TFractionFitter.cxx:674
 TFractionFitter.cxx:675
 TFractionFitter.cxx:676
 TFractionFitter.cxx:677
 TFractionFitter.cxx:678
 TFractionFitter.cxx:679
 TFractionFitter.cxx:680
 TFractionFitter.cxx:681
 TFractionFitter.cxx:682
 TFractionFitter.cxx:683
 TFractionFitter.cxx:684
 TFractionFitter.cxx:685
 TFractionFitter.cxx:686
 TFractionFitter.cxx:687
 TFractionFitter.cxx:688
 TFractionFitter.cxx:689
 TFractionFitter.cxx:690
 TFractionFitter.cxx:691
 TFractionFitter.cxx:692
 TFractionFitter.cxx:693
 TFractionFitter.cxx:694
 TFractionFitter.cxx:695
 TFractionFitter.cxx:696
 TFractionFitter.cxx:697
 TFractionFitter.cxx:698
 TFractionFitter.cxx:699
 TFractionFitter.cxx:700
 TFractionFitter.cxx:701
 TFractionFitter.cxx:702
 TFractionFitter.cxx:703
 TFractionFitter.cxx:704
 TFractionFitter.cxx:705
 TFractionFitter.cxx:706
 TFractionFitter.cxx:707
 TFractionFitter.cxx:708
 TFractionFitter.cxx:709
 TFractionFitter.cxx:710
 TFractionFitter.cxx:711
 TFractionFitter.cxx:712
 TFractionFitter.cxx:713
 TFractionFitter.cxx:714
 TFractionFitter.cxx:715
 TFractionFitter.cxx:716
 TFractionFitter.cxx:717
 TFractionFitter.cxx:718
 TFractionFitter.cxx:719
 TFractionFitter.cxx:720
 TFractionFitter.cxx:721
 TFractionFitter.cxx:722
 TFractionFitter.cxx:723
 TFractionFitter.cxx:724
 TFractionFitter.cxx:725
 TFractionFitter.cxx:726
 TFractionFitter.cxx:727
 TFractionFitter.cxx:728
 TFractionFitter.cxx:729
 TFractionFitter.cxx:730
 TFractionFitter.cxx:731
 TFractionFitter.cxx:732
 TFractionFitter.cxx:733
 TFractionFitter.cxx:734
 TFractionFitter.cxx:735
 TFractionFitter.cxx:736
 TFractionFitter.cxx:737
 TFractionFitter.cxx:738
 TFractionFitter.cxx:739
 TFractionFitter.cxx:740
 TFractionFitter.cxx:741
 TFractionFitter.cxx:742
 TFractionFitter.cxx:743
 TFractionFitter.cxx:744
 TFractionFitter.cxx:745
 TFractionFitter.cxx:746
 TFractionFitter.cxx:747
 TFractionFitter.cxx:748
 TFractionFitter.cxx:749
 TFractionFitter.cxx:750
 TFractionFitter.cxx:751
 TFractionFitter.cxx:752
 TFractionFitter.cxx:753
 TFractionFitter.cxx:754
 TFractionFitter.cxx:755
 TFractionFitter.cxx:756
 TFractionFitter.cxx:757
 TFractionFitter.cxx:758
 TFractionFitter.cxx:759
 TFractionFitter.cxx:760
 TFractionFitter.cxx:761
 TFractionFitter.cxx:762
 TFractionFitter.cxx:763
 TFractionFitter.cxx:764
 TFractionFitter.cxx:765
 TFractionFitter.cxx:766
 TFractionFitter.cxx:767
 TFractionFitter.cxx:768
 TFractionFitter.cxx:769
 TFractionFitter.cxx:770
 TFractionFitter.cxx:771
 TFractionFitter.cxx:772
 TFractionFitter.cxx:773
 TFractionFitter.cxx:774
 TFractionFitter.cxx:775
 TFractionFitter.cxx:776
 TFractionFitter.cxx:777
 TFractionFitter.cxx:778
 TFractionFitter.cxx:779
 TFractionFitter.cxx:780
 TFractionFitter.cxx:781
 TFractionFitter.cxx:782
 TFractionFitter.cxx:783
 TFractionFitter.cxx:784
 TFractionFitter.cxx:785
 TFractionFitter.cxx:786
 TFractionFitter.cxx:787
 TFractionFitter.cxx:788
 TFractionFitter.cxx:789
 TFractionFitter.cxx:790
 TFractionFitter.cxx:791
 TFractionFitter.cxx:792
 TFractionFitter.cxx:793
 TFractionFitter.cxx:794
 TFractionFitter.cxx:795
 TFractionFitter.cxx:796
 TFractionFitter.cxx:797
 TFractionFitter.cxx:798
 TFractionFitter.cxx:799
 TFractionFitter.cxx:800
 TFractionFitter.cxx:801
 TFractionFitter.cxx:802
 TFractionFitter.cxx:803
 TFractionFitter.cxx:804
 TFractionFitter.cxx:805
 TFractionFitter.cxx:806
 TFractionFitter.cxx:807
 TFractionFitter.cxx:808
 TFractionFitter.cxx:809
 TFractionFitter.cxx:810
 TFractionFitter.cxx:811
 TFractionFitter.cxx:812
 TFractionFitter.cxx:813
 TFractionFitter.cxx:814
 TFractionFitter.cxx:815
 TFractionFitter.cxx:816
 TFractionFitter.cxx:817
 TFractionFitter.cxx:818
 TFractionFitter.cxx:819
 TFractionFitter.cxx:820
 TFractionFitter.cxx:821
 TFractionFitter.cxx:822
 TFractionFitter.cxx:823
 TFractionFitter.cxx:824
 TFractionFitter.cxx:825
 TFractionFitter.cxx:826
 TFractionFitter.cxx:827
 TFractionFitter.cxx:828
 TFractionFitter.cxx:829
 TFractionFitter.cxx:830
 TFractionFitter.cxx:831
 TFractionFitter.cxx:832
 TFractionFitter.cxx:833
 TFractionFitter.cxx:834
 TFractionFitter.cxx:835
 TFractionFitter.cxx:836
 TFractionFitter.cxx:837
 TFractionFitter.cxx:838
 TFractionFitter.cxx:839
 TFractionFitter.cxx:840
 TFractionFitter.cxx:841
 TFractionFitter.cxx:842
 TFractionFitter.cxx:843
 TFractionFitter.cxx:844
 TFractionFitter.cxx:845
 TFractionFitter.cxx:846
 TFractionFitter.cxx:847
 TFractionFitter.cxx:848
 TFractionFitter.cxx:849
 TFractionFitter.cxx:850
 TFractionFitter.cxx:851
 TFractionFitter.cxx:852
 TFractionFitter.cxx:853
 TFractionFitter.cxx:854
 TFractionFitter.cxx:855
 TFractionFitter.cxx:856
 TFractionFitter.cxx:857
 TFractionFitter.cxx:858
 TFractionFitter.cxx:859
 TFractionFitter.cxx:860
 TFractionFitter.cxx:861
 TFractionFitter.cxx:862
 TFractionFitter.cxx:863
 TFractionFitter.cxx:864
 TFractionFitter.cxx:865
 TFractionFitter.cxx:866
 TFractionFitter.cxx:867
 TFractionFitter.cxx:868
 TFractionFitter.cxx:869
 TFractionFitter.cxx:870
 TFractionFitter.cxx:871
 TFractionFitter.cxx:872
 TFractionFitter.cxx:873
 TFractionFitter.cxx:874
 TFractionFitter.cxx:875
 TFractionFitter.cxx:876
 TFractionFitter.cxx:877
 TFractionFitter.cxx:878
 TFractionFitter.cxx:879
 TFractionFitter.cxx:880
 TFractionFitter.cxx:881
 TFractionFitter.cxx:882
 TFractionFitter.cxx:883
 TFractionFitter.cxx:884
 TFractionFitter.cxx:885
 TFractionFitter.cxx:886
 TFractionFitter.cxx:887
 TFractionFitter.cxx:888
 TFractionFitter.cxx:889
 TFractionFitter.cxx:890
 TFractionFitter.cxx:891
 TFractionFitter.cxx:892
 TFractionFitter.cxx:893
 TFractionFitter.cxx:894
 TFractionFitter.cxx:895
 TFractionFitter.cxx:896
 TFractionFitter.cxx:897
 TFractionFitter.cxx:898
 TFractionFitter.cxx:899
 TFractionFitter.cxx:900
 TFractionFitter.cxx:901
 TFractionFitter.cxx:902
 TFractionFitter.cxx:903
 TFractionFitter.cxx:904
 TFractionFitter.cxx:905
 TFractionFitter.cxx:906
 TFractionFitter.cxx:907
 TFractionFitter.cxx:908
 TFractionFitter.cxx:909
 TFractionFitter.cxx:910
 TFractionFitter.cxx:911
 TFractionFitter.cxx:912
 TFractionFitter.cxx:913
 TFractionFitter.cxx:914
 TFractionFitter.cxx:915
 TFractionFitter.cxx:916
 TFractionFitter.cxx:917
 TFractionFitter.cxx:918
 TFractionFitter.cxx:919
 TFractionFitter.cxx:920
 TFractionFitter.cxx:921
 TFractionFitter.cxx:922
 TFractionFitter.cxx:923
 TFractionFitter.cxx:924
 TFractionFitter.cxx:925
 TFractionFitter.cxx:926
 TFractionFitter.cxx:927
 TFractionFitter.cxx:928
 TFractionFitter.cxx:929
 TFractionFitter.cxx:930
 TFractionFitter.cxx:931
 TFractionFitter.cxx:932
 TFractionFitter.cxx:933
 TFractionFitter.cxx:934
 TFractionFitter.cxx:935
 TFractionFitter.cxx:936
 TFractionFitter.cxx:937
 TFractionFitter.cxx:938
 TFractionFitter.cxx:939
 TFractionFitter.cxx:940
 TFractionFitter.cxx:941
 TFractionFitter.cxx:942
 TFractionFitter.cxx:943
 TFractionFitter.cxx:944
 TFractionFitter.cxx:945
 TFractionFitter.cxx:946
 TFractionFitter.cxx:947
 TFractionFitter.cxx:948
 TFractionFitter.cxx:949
 TFractionFitter.cxx:950
 TFractionFitter.cxx:951
 TFractionFitter.cxx:952
 TFractionFitter.cxx:953
 TFractionFitter.cxx:954
 TFractionFitter.cxx:955
 TFractionFitter.cxx:956
 TFractionFitter.cxx:957
 TFractionFitter.cxx:958
 TFractionFitter.cxx:959
 TFractionFitter.cxx:960