// @(#)root/hist:$Id: TMultiGraph.cxx 37735 2011-01-07 10:20:05Z couet $ // Author: Rene Brun 12/10/2000 /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ #include "TROOT.h" #include "TMultiGraph.h" #include "TGraph.h" #include "TH1.h" #include "TVirtualPad.h" #include "Riostream.h" #include "TVirtualFitter.h" #include "TPluginManager.h" #include "TClass.h" #include "TMath.h" #include "TSystem.h" #include <stdlib.h> #include "HFitInterface.h" #include "Fit/DataRange.h" #include "Math/MinimizerOptions.h" #include <ctype.h> extern void H1LeastSquareSeqnd(Int_t n, Double_t *a, Int_t idim, Int_t &ifail, Int_t k, Double_t *b); ClassImp(TMultiGraph) //______________________________________________________________________________ /* Begin_Html <center><h2>TMultiGraph class</h2></center> A TMultiGraph is a collection of TGraph (or derived) objects. It allows to manipulate a set of graphs as a single entity. In particular, when drawn, the X and Y axis ranges are automatically computed such as all the graphs will be visible. <p> <tt>TMultiGraph::Add</tt> should be used to add a new graph to the list. <p> The TMultiGraph owns the objects in the list. <p> The drawing options are the same as for TGraph. Like for TGraph, the painting is performed thanks to the <a href="http://root.cern.ch/root/html/TGraphPainter.html">TGraphPainter</a> class. All details about the various painting options are given in <a href="http://root.cern.ch/root/html/TGraphPainter.html">this class</a>. Example: <pre> TGraph *gr1 = new TGraph(... TGraphErrors *gr2 = new TGraphErrors(... TMultiGraph *mg = new TMultiGraph(); mg->Add(gr1,"lp"); mg->Add(gr2,"cp"); mg->Draw("a"); </pre> <p> The number of graphs in a multigraph can be retrieve with: <pre> mg->GetListOfGraphs()->GetSize(); </pre> <p> The drawing option for each TGraph may be specified as an optional second argument of the <tt>Add</tt> function. <p> If a draw option is specified, it will be used to draw the graph, otherwise the graph will be drawn with the option specified in <tt>TMultiGraph::Draw</tt>. <p> The following example shows how to fit a TMultiGraph. End_Html Begin_Macro(source) { TCanvas *c1 = new TCanvas("c1","c1",600,400); Double_t x1[2] = {2.,4.}; Double_t dx1[2] = {0.1,0.1}; Double_t y1[2] = {2.1,4.0}; Double_t dy1[2] = {0.3,0.2}; Double_t x2[2] = {3.,5.}; Double_t dx2[2] = {0.1,0.1}; Double_t y2[2] = {3.2,4.8}; Double_t dy2[2] = {0.3,0.2}; gStyle->SetOptFit(0001); TGraphErrors *g1 = new TGraphErrors(2,x1,y1,dx1,dy1); g1->SetMarkerStyle(21); g1->SetMarkerColor(2); TGraphErrors *g2 = new TGraphErrors(2,x2,y2,dx2,dy2); g2->SetMarkerStyle(22); g2->SetMarkerColor(3); TMultiGraph *g = new TMultiGraph(); g->Add(g1); g->Add(g2); g->Draw("AP"); g->Fit("pol1","FQ"); return c1; } End_Macro Begin_Html <p> The axis titles can be modified the following way: <p> <pre> [...] TMultiGraph *mg = new TMultiGraph; mg->SetTitle("title;xaxis title; yaxis title"); mg->Add(g1); mg->Add(g2); mg->Draw("apl"); </pre> <p> When the graphs in a TMultiGraph are fitted, the fit parameters boxes overlap. The following example shows how to make them all visible. End_Html Begin_Macro(source) ../../../tutorials/graphs/multigraph.C End_Macro Begin_Html <p> The axis limits can be changed the like for TGraph. The same methods apply on the multigraph. Note the two differents ways to change limits on X and Y axis. End_Html Begin_Macro(source) { TCanvas *c2 = new TCanvas("c2","c2",600,400); TGraph *g[3]; Double_t x[10] = {0,1,2,3,4,5,6,7,8,9}; Double_t y[10] = {1,2,3,4,5,5,4,3,2,1}; TMultiGraph *mg = new TMultiGraph(); for (int i=0; i<3; i++) { g[i] = new TGraph(10, x, y); g[i]->SetMarkerStyle(20); g[i]->SetMarkerColor(i+2); for (int j=0; j<10; j++) y[j] = y[j]-1; mg->Add(g[i]); } mg->Draw("APL"); mg->GetXaxis()->SetTitle("E_{#gamma} (GeV)"); mg->GetYaxis()->SetTitle("Coefficients"); // Change the axis limits gPad->Modified(); mg->GetXaxis()->SetLimits(1.5,7.5); mg->SetMinimum(0.); mg->SetMaximum(10.); return c2; } End_Macro Begin_Html <p> The method <a href="http://root.cern.ch/root/html/TPad.html#TPad:BuildLegend"> <tt>TPad::BuildLegend</tt></a> is able to extract the graphs inside a multigraph. The following example demonstrate this. End_Html Begin_Macro(source) { TCanvas *c3 = new TCanvas("c3","c3",600, 400); TMultiGraph * mg = new TMultiGraph("mg","mg"); const Int_t size = 10; double x[size]; double y1[size]; double y2[size]; double y3[size]; for ( int i = 0; i < size ; ++i ) { x[i] = i; y1[i] = size - i; y2[i] = size - 0.5 * i; y3[i] = size - 0.6 * i; } TGraph * gr1 = new TGraph( size, x, y1 ); gr1->SetName("gr1"); gr1->SetTitle("graph 1"); gr1->SetMarkerStyle(21); gr1->SetDrawOption("AP"); gr1->SetLineColor(2); gr1->SetLineWidth(4); gr1->SetFillStyle(0); TGraph * gr2 = new TGraph( size, x, y2 ); gr2->SetName("gr2"); gr2->SetTitle("graph 2"); gr2->SetMarkerStyle(22); gr2->SetMarkerColor(2); gr2->SetDrawOption("P"); gr2->SetLineColor(3); gr2->SetLineWidth(4); gr2->SetFillStyle(0); TGraph * gr3 = new TGraph( size, x, y3 ); gr3->SetName("gr3"); gr3->SetTitle("graph 3"); gr3->SetMarkerStyle(23); gr3->SetLineColor(4); gr3->SetLineWidth(4); gr3->SetFillStyle(0); mg->Add( gr1 ); mg->Add( gr2 ); gr3->Draw("ALP"); mg->Draw("LP"); c3->BuildLegend(); return c3; } End_Macro Begin_Html End_Html */ //______________________________________________________________________________ TMultiGraph::TMultiGraph(): TNamed() { // TMultiGraph default constructor fGraphs = 0; fFunctions = 0; fHistogram = 0; fMaximum = -1111; fMinimum = -1111; } //______________________________________________________________________________ TMultiGraph::TMultiGraph(const char *name, const char *title) : TNamed(name,title) { // constructor with name and title fGraphs = 0; fFunctions = 0; fHistogram = 0; fMaximum = -1111; fMinimum = -1111; } //______________________________________________________________________________ TMultiGraph::TMultiGraph(const TMultiGraph& mg) : TNamed (mg), fGraphs(mg.fGraphs), fFunctions(mg.fFunctions), fHistogram(mg.fHistogram), fMaximum(mg.fMaximum), fMinimum(mg.fMinimum) { //copy constructor } //______________________________________________________________________________ TMultiGraph& TMultiGraph::operator=(const TMultiGraph& mg) { //assignement operator if(this!=&mg) { TNamed::operator=(mg); fGraphs=mg.fGraphs; fFunctions=mg.fFunctions; fHistogram=mg.fHistogram; fMaximum=mg.fMaximum; fMinimum=mg.fMinimum; } return *this; } //______________________________________________________________________________ TMultiGraph::~TMultiGraph() { // TMultiGraph destructor if (!fGraphs) return; TGraph *g; TIter next(fGraphs); while ((g = (TGraph*) next())) { g->ResetBit(kMustCleanup); } fGraphs->Delete(); delete fGraphs; fGraphs = 0; delete fHistogram; fHistogram = 0; if (fFunctions) { fFunctions->SetBit(kInvalidObject); //special logic to support the case where the same object is //added multiple times in fFunctions. //This case happens when the same object is added with different //drawing modes TObject *obj; while ((obj = fFunctions->First())) { while(fFunctions->Remove(obj)) { } delete obj; } delete fFunctions; } } //______________________________________________________________________________ void TMultiGraph::Add(TGraph *graph, Option_t *chopt) { // add a new graph to the list of graphs // note that the graph is now owned by the TMultigraph. // Deleting the TMultiGraph object will automatically delete the graphs. // You should not delete the graphs when the TMultigraph is still active. if (!fGraphs) fGraphs = new TList(); graph->SetBit(kMustCleanup); fGraphs->Add(graph,chopt); } //______________________________________________________________________________ void TMultiGraph::Add(TMultiGraph *multigraph, Option_t *chopt) { // add all the graphs in "multigraph" to the list of graphs. TList *graphlist = multigraph->GetListOfGraphs(); if (!graphlist) return; if (!fGraphs) fGraphs = new TList(); TGraph *gr; gr = (TGraph*)graphlist->First(); fGraphs->Add(gr,chopt); for(Int_t i = 1; i < graphlist->GetSize(); i++){ gr = (TGraph*)graphlist->After(gr); fGraphs->Add(gr,chopt); } } //______________________________________________________________________________ void TMultiGraph::Browse(TBrowser *) { // Browse multigraph. Draw("alp"); gPad->Update(); } //______________________________________________________________________________ Int_t TMultiGraph::DistancetoPrimitive(Int_t px, Int_t py) { // Compute distance from point px,py to each graph // Are we on the axis? const Int_t kMaxDiff = 10; Int_t distance = 9999; if (fHistogram) { distance = fHistogram->DistancetoPrimitive(px,py); if (distance <= 0) return distance; } // Loop on the list of graphs if (!fGraphs) return distance; TGraph *g; TIter next(fGraphs); while ((g = (TGraph*) next())) { Int_t dist = g->DistancetoPrimitive(px,py); if (dist <= 0) return 0; if (dist < kMaxDiff) {gPad->SetSelected(g); return dist;} } return distance; } //______________________________________________________________________________ void TMultiGraph::Draw(Option_t *option) { // Draw this multigraph with its current attributes. // // Options to draw a graph are described in TGraph::PaintGraph // // The drawing option for each TGraph may be specified as an optional // second argument of the Add function. You can use GetGraphDrawOption // to return this option. // If a draw option is specified, it will be used to draw the graph, // otherwise the graph will be drawn with the option specified in // TMultiGraph::Draw. Use GetDrawOption to return the option specified // when drawing the TMultiGraph. AppendPad(option); } //______________________________________________________________________________ TFitResultPtr TMultiGraph::Fit(const char *fname, Option_t *option, Option_t *, Axis_t xmin, Axis_t xmax) { // Fit this graph with function with name fname. // // interface to TF1::Fit(TF1 *f1... char *linear; linear= (char*)strstr(fname, "++"); TF1 *f1=0; if (linear) f1=new TF1(fname, fname, xmin, xmax); else { f1 = (TF1*)gROOT->GetFunction(fname); if (!f1) { Printf("Unknown function: %s",fname); return -1; } } return Fit(f1,option,"",xmin,xmax); } //______________________________________________________________________________ TFitResultPtr TMultiGraph::Fit(TF1 *f1, Option_t *option, Option_t *goption, Axis_t rxmin, Axis_t rxmax) { // Fit this multigraph with function f1. // // In this function all graphs of the multigraph are fitted simultaneously // // f1 is an already predefined function created by TF1. // Predefined functions such as gaus, expo and poln are automatically // created by ROOT. // // The list of fit options is given in parameter option. // option = "W" Set all errors to 1 // = "U" Use a User specified fitting algorithm (via SetFCN) // = "Q" Quiet mode (minimum printing) // = "V" Verbose mode (default is between Q and V) // = "B" Use this option when you want to fix one or more parameters // and the fitting function is like "gaus","expo","poln","landau". // = "R" Use the Range specified in the function range // = "N" Do not store the graphics function, do not draw // = "0" Do not plot the result of the fit. By default the fitted function // is drawn unless the option"N" above is specified. // = "+" Add this new fitted function to the list of fitted functions // (by default, any previous function is deleted) // = "C" In case of linear fitting, not calculate the chisquare // (saves time) // = "F" If fitting a polN, switch to minuit fitter // = "ROB" In case of linear fitting, compute the LTS regression // coefficients (robust(resistant) regression), using // the default fraction of good points // "ROB=0.x" - compute the LTS regression coefficients, using // 0.x as a fraction of good points // // When the fit is drawn (by default), the parameter goption may be used // to specify a list of graphics options. See TGraph::Paint for a complete // list of these options. // // In order to use the Range option, one must first create a function // with the expression to be fitted. For example, if your graph // has a defined range between -4 and 4 and you want to fit a gaussian // only in the interval 1 to 3, you can do: // TF1 *f1 = new TF1("f1","gaus",1,3); // graph->Fit("f1","R"); // // // who is calling this function // ============================ // Note that this function is called when calling TGraphErrors::Fit // or TGraphAsymmErrors::Fit ot TGraphBentErrors::Fit // see the discussion below on the errors calulation. // // Setting initial conditions // ========================== // Parameters must be initialized before invoking the Fit function. // The setting of the parameter initial values is automatic for the // predefined functions : poln, expo, gaus, landau. One can however disable // this automatic computation by specifying the option "B". // You can specify boundary limits for some or all parameters via // f1->SetParLimits(p_number, parmin, parmax); // if parmin>=parmax, the parameter is fixed // Note that you are not forced to fix the limits for all parameters. // For example, if you fit a function with 6 parameters, you can do: // func->SetParameters(0,3.1,1.e-6,0.1,-8,100); // func->SetParLimits(4,-10,-4); // func->SetParLimits(5, 1,1); // With this setup, parameters 0->3 can vary freely // Parameter 4 has boundaries [-10,-4] with initial value -8 // Parameter 5 is fixed to 100. // // Fit range // ========= // The fit range can be specified in two ways: // - specify rxmax > rxmin (default is rxmin=rxmax=0) // - specify the option "R". In this case, the function will be taken // instead of the full graph range. // // Changing the fitting function // ============================= // By default a chi2 fitting function is used for fitting the TGraphs's. // The function is implemented in FitUtil::EvaluateChi2. // In case of TGraphErrors an effective chi2 is used // (see TGraphErrors fit in TGraph::Fit) and is implemented in // FitUtil::EvaluateChi2Effective // To specify a User defined fitting function, specify option "U" and // call the following functions: // TVirtualFitter::Fitter(mygraph)->SetFCN(MyFittingFunction) // where MyFittingFunction is of type: // extern void MyFittingFunction(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag); // // Access to the fit result // ======================== // The function returns a TFitResultPtr which can hold a pointer to a TFitResult object. // By default the TFitResultPtr contains only the status of the fit and it converts // automatically to an integer. If the option "S" is instead used, TFitResultPtr contains // the TFitResult and behaves as a smart pointer to it. For example one can do: // TFitResultPtr r = graph->Fit("myFunc","S"); // TMatrixDSym cov = r->GetCovarianceMatrix(); // to access the covariance matrix // Double_t par0 = r->Parameter(0); // retrieve the value for the parameter 0 // Double_t err0 = r->ParError(0); // retrieve the error for the parameter 0 // r->Print("V"); // print full information of fit including covariance matrix // r->Write(); // store the result in a file // // The fit parameters, error and chi2 (but not covariance matrix) can be retrieved also // from the fitted function. // // // Associated functions // ==================== // One or more object (typically a TF1*) can be added to the list // of functions (fFunctions) associated to each graph. // When TGraph::Fit is invoked, the fitted function is added to this list. // Given a graph gr, one can retrieve an associated function // with: TF1 *myfunc = gr->GetFunction("myfunc"); // // If the graph is made persistent, the list of // associated functions is also persistent. Given a pointer (see above) // to an associated function myfunc, one can retrieve the function/fit // parameters with calls such as: // Double_t chi2 = myfunc->GetChisquare(); // Double_t par0 = myfunc->GetParameter(0); //value of 1st parameter // Double_t err0 = myfunc->GetParError(0); //error on first parameter // // Fit Statistics // ============== // You can change the statistics box to display the fit parameters with // the TStyle::SetOptFit(mode) method. This mode has four digits. // mode = pcev (default = 0111) // v = 1; print name/values of parameters // e = 1; print errors (if e=1, v must be 1) // c = 1; print Chisquare/Number of degress of freedom // p = 1; print Probability // // For example: gStyle->SetOptFit(1011); // prints the fit probability, parameter names/values, and errors. // You can change the position of the statistics box with these lines // (where g is a pointer to the TGraph): // // Root > TPaveStats *st = (TPaveStats*)g->GetListOfFunctions()->FindObject("stats") // Root > st->SetX1NDC(newx1); //new x start position // Root > st->SetX2NDC(newx2); //new x end position // internal multigraph fitting methods Foption_t fitOption; ROOT::Fit::FitOptionsMake(option,fitOption); // create range and minimizer options with default values ROOT::Fit::DataRange range(rxmin,rxmax); ROOT::Math::MinimizerOptions minOption; return ROOT::Fit::FitObject(this, f1 , fitOption , minOption, goption, range); } //______________________________________________________________________________ void TMultiGraph::FitPanel() { // -*-*-*-*-*Display a panel with all histogram fit options*-*-*-*-*-* // ============================================== // // See class TFitPanel for example if (!gPad) gROOT->MakeDefCanvas(); if (!gPad) { Error("FitPanel", "Unable to create a default canvas"); return; } // use plugin manager to create instance of TFitEditor TPluginHandler *handler = gROOT->GetPluginManager()->FindHandler("TFitEditor"); if (handler && handler->LoadPlugin() != -1) { if (handler->ExecPlugin(2, gPad, this) == 0) Error("FitPanel", "Unable to crate the FitPanel"); } else Error("FitPanel", "Unable to find the FitPanel plug-in"); } //______________________________________________________________________________ Option_t *TMultiGraph::GetGraphDrawOption(const TGraph *gr) const { // Return the draw option for the TGraph gr in this TMultiGraph // The return option is the one specified when calling TMultiGraph::Add(gr,option). if (!fGraphs || !gr) return ""; TListIter next(fGraphs); TObject *obj; while ((obj = next())) { if (obj == (TObject*)gr) return next.GetOption(); } return ""; } //______________________________________________________________________________ void TMultiGraph::InitGaus(Double_t xmin, Double_t xmax) { // Compute Initial values of parameters for a gaussian. Double_t allcha, sumx, sumx2, x, val, rms, mean; Int_t bin; const Double_t sqrtpi = 2.506628; // Compute mean value and RMS of the graph in the given range Int_t np = 0; allcha = sumx = sumx2 = 0; TGraph *g; TIter next(fGraphs); Double_t *px, *py; Int_t npp; //number of points in each graph while ((g = (TGraph*) next())) { px=g->GetX(); py=g->GetY(); npp=g->GetN(); for (bin=0; bin<npp; bin++){ x=px[bin]; if (x<xmin || x>xmax) continue; np++; val=py[bin]; sumx+=val*x; sumx2+=val*x*x; allcha+=val; } } if (np == 0 || allcha == 0) return; mean = sumx/allcha; rms = TMath::Sqrt(sumx2/allcha - mean*mean); Double_t binwidx = TMath::Abs((xmax-xmin)/np); if (rms == 0) rms = 1; TVirtualFitter *grFitter = TVirtualFitter::GetFitter(); TF1 *f1 = (TF1*)grFitter->GetUserFunc(); f1->SetParameter(0,binwidx*allcha/(sqrtpi*rms)); f1->SetParameter(1,mean); f1->SetParameter(2,rms); f1->SetParLimits(2,0,10*rms); } //______________________________________________________________________________ void TMultiGraph::InitExpo(Double_t xmin, Double_t xmax) { // Compute Initial values of parameters for an exponential. Double_t constant, slope; Int_t ifail; LeastSquareLinearFit(-1, constant, slope, ifail, xmin, xmax); TVirtualFitter *grFitter = TVirtualFitter::GetFitter(); TF1 *f1 = (TF1*)grFitter->GetUserFunc(); f1->SetParameter(0,constant); f1->SetParameter(1,slope); } //______________________________________________________________________________ void TMultiGraph::InitPolynom(Double_t xmin, Double_t xmax) { // Compute Initial values of parameters for a polynom. Double_t fitpar[25]; TVirtualFitter *grFitter = TVirtualFitter::GetFitter(); TF1 *f1 = (TF1*)grFitter->GetUserFunc(); Int_t npar = f1->GetNpar(); LeastSquareFit(npar, fitpar, xmin, xmax); for (Int_t i=0;i<npar;i++) f1->SetParameter(i, fitpar[i]); } //______________________________________________________________________________ void TMultiGraph::LeastSquareFit(Int_t m, Double_t *a, Double_t xmin, Double_t xmax) { // Least squares lpolynomial fitting without weights. // // m number of parameters // a array of parameters // first 1st point number to fit (default =0) // last last point number to fit (default=fNpoints-1) // // based on CERNLIB routine LSQ: Translated to C++ by Rene Brun const Double_t zero = 0.; const Double_t one = 1.; const Int_t idim = 20; Double_t b[400] /* was [20][20] */; Int_t i, k, l, ifail, bin; Double_t power; Double_t da[20], xk, yk; //count the total number of points to fit TGraph *g; TIter next(fGraphs); Double_t *px, *py; Int_t n=0; Int_t npp; while ((g = (TGraph*) next())) { px=g->GetX(); npp=g->GetN(); for (bin=0; bin<npp; bin++){ xk=px[bin]; if (xk < xmin || xk > xmax) continue; n++; } } if (m <= 2) { LeastSquareLinearFit(n, a[0], a[1], ifail, xmin, xmax); return; } if (m > idim || m > n) return; da[0] = zero; for (l = 2; l <= m; ++l) { b[l-1] = zero; b[m + l*20 - 21] = zero; da[l-1] = zero; } Int_t np = 0; next.Reset(); while ((g = (TGraph*) next())) { px=g->GetX(); py=g->GetY(); npp=g->GetN(); for (k = 0; k <= npp; ++k) { xk = px[k]; if (xk < xmin || xk > xmax) continue; np++; yk = py[k]; power = one; da[0] += yk; for (l = 2; l <= m; ++l) { power *= xk; b[l-1] += power; da[l-1] += power*yk; } for (l = 2; l <= m; ++l) { power *= xk; b[m + l*20 - 21] += power; } } } b[0] = Double_t(np); for (i = 3; i <= m; ++i) { for (k = i; k <= m; ++k) { b[k - 1 + (i-1)*20 - 21] = b[k + (i-2)*20 - 21]; } } H1LeastSquareSeqnd(m, b, idim, ifail, 1, da); if (ifail < 0) { //a[0] = fY[0]; py=((TGraph *)fGraphs->First())->GetY(); a[0]=py[0]; for (i=1; i<m; ++i) a[i] = 0; return; } for (i=0; i<m; ++i) a[i] = da[i]; } //______________________________________________________________________________ void TMultiGraph::LeastSquareLinearFit(Int_t ndata, Double_t &a0, Double_t &a1, Int_t &ifail, Double_t xmin, Double_t xmax) { // Least square linear fit without weights. // // Fit a straight line (a0 + a1*x) to the data in this graph. // ndata: number of points to fit // first: first point number to fit // last: last point to fit O(ndata should be last-first // ifail: return parameter indicating the status of the fit (ifail=0, fit is OK) // // extracted from CERNLIB LLSQ: Translated to C++ by Rene Brun Double_t xbar, ybar, x2bar; Int_t i; Double_t xybar; Double_t fn, xk, yk; Double_t det; ifail = -2; xbar = ybar = x2bar = xybar = 0; Int_t np = 0; TGraph *g; TIter next(fGraphs); Double_t *px, *py; Int_t npp; while ((g = (TGraph*) next())) { px=g->GetX(); py=g->GetY(); npp=g->GetN(); for (i = 0; i < npp; ++i) { xk = px[i]; if (xk < xmin || xk > xmax) continue; np++; yk = py[i]; if (ndata < 0) { if (yk <= 0) yk = 1e-9; yk = TMath::Log(yk); } xbar += xk; ybar += yk; x2bar += xk*xk; xybar += xk*yk; } } fn = Double_t(np); det = fn*x2bar - xbar*xbar; ifail = -1; if (det <= 0) { if (fn > 0) a0 = ybar/fn; else a0 = 0; a1 = 0; return; } ifail = 0; a0 = (x2bar*ybar - xbar*xybar) / det; a1 = (fn*xybar - xbar*ybar) / det; } //______________________________________________________________________________ Int_t TMultiGraph::IsInside(Double_t x, Double_t y) const { // Return 1 if the point (x,y) is inside one of the graphs 0 otherwise. Int_t in = 0; if (!fGraphs) return in; TGraph *g; TIter next(fGraphs); while ((g = (TGraph*) next())) { in = g->IsInside(x, y); if (in) return in; } return in; } //______________________________________________________________________________ TH1F *TMultiGraph::GetHistogram() const { // Returns a pointer to the histogram used to draw the axis // Takes into account the two following cases. // 1- option 'A' was specified in TMultiGraph::Draw. Return fHistogram // 2- user had called TPad::DrawFrame. return pointer to hframe histogram if (fHistogram) return fHistogram; if (!gPad) return 0; gPad->Modified(); gPad->Update(); if (fHistogram) return fHistogram; TH1F *h1 = (TH1F*)gPad->FindObject("hframe"); return h1; } //______________________________________________________________________________ TF1 *TMultiGraph::GetFunction(const char *name) const { // Return pointer to function with name. // // Functions such as TGraph::Fit store the fitted function in the list of // functions of this graph. if (!fFunctions) return 0; return (TF1*)fFunctions->FindObject(name); } //______________________________________________________________________________ TList *TMultiGraph::GetListOfFunctions() { // Return pointer to list of functions // if pointer is null create the list if (!fFunctions) fFunctions = new TList(); return fFunctions; } //______________________________________________________________________________ TAxis *TMultiGraph::GetXaxis() const { // Get x axis of the graph. if (!gPad) return 0; TH1 *h = GetHistogram(); if (!h) return 0; return h->GetXaxis(); } //______________________________________________________________________________ TAxis *TMultiGraph::GetYaxis() const { // Get y axis of the graph. if (!gPad) return 0; TH1 *h = GetHistogram(); if (!h) return 0; return h->GetYaxis(); } //______________________________________________________________________________ void TMultiGraph::Paint(Option_t *option) { // paint all the graphs of this multigraph if (!fGraphs) return; if (fGraphs->GetSize() == 0) return; char *l; static char chopt[33]; Int_t nch = strlen(option); Int_t i; for (i=0;i<nch;i++) chopt[i] = toupper(option[i]); chopt[nch] = 0; TGraph *g; l = strstr(chopt,"A"); if (l) { *l = ' '; TIter next(fGraphs); Int_t npt = 100; Double_t maximum, minimum, rwxmin, rwxmax, rwymin, rwymax, uxmin, uxmax, dx, dy; rwxmin = gPad->GetUxmin(); rwxmax = gPad->GetUxmax(); rwymin = gPad->GetUymin(); rwymax = gPad->GetUymax(); char *xtitle = 0; char *ytitle = 0; Int_t firstx = 0; Int_t lastx = 0; if (fHistogram) { //cleanup in case of a previous unzoom if (fHistogram->GetMinimum() >= fHistogram->GetMaximum()) { nch = strlen(fHistogram->GetXaxis()->GetTitle()); firstx = fHistogram->GetXaxis()->GetFirst(); lastx = fHistogram->GetXaxis()->GetLast(); if (nch) { xtitle = new char[nch+1]; strlcpy(xtitle,fHistogram->GetXaxis()->GetTitle(),nch+1); } nch = strlen(fHistogram->GetYaxis()->GetTitle()); if (nch) { ytitle = new char[nch+1]; strlcpy(ytitle,fHistogram->GetYaxis()->GetTitle(),nch+1); } delete fHistogram; fHistogram = 0; } } if (fHistogram) { minimum = fHistogram->GetYaxis()->GetXmin(); maximum = fHistogram->GetYaxis()->GetXmax(); uxmin = gPad->PadtoX(rwxmin); uxmax = gPad->PadtoX(rwxmax); } else { g = (TGraph*) next(); if (g) g->ComputeRange(rwxmin, rwymin, rwxmax, rwymax); while ((g = (TGraph*) next())) { Double_t rx1,ry1,rx2,ry2; g->ComputeRange(rx1, ry1, rx2, ry2); if (rx1 < rwxmin) rwxmin = rx1; if (ry1 < rwymin) rwymin = ry1; if (rx2 > rwxmax) rwxmax = rx2; if (ry2 > rwymax) rwymax = ry2; if (g->GetN() > npt) npt = g->GetN(); } if (rwxmin == rwxmax) rwxmax += 1.; if (rwymin == rwymax) rwymax += 1.; dx = 0.05*(rwxmax-rwxmin); dy = 0.05*(rwymax-rwymin); uxmin = rwxmin - dx; uxmax = rwxmax + dx; if (gPad->GetLogy()) { if (rwymin <= 0) rwymin = 0.001*rwymax; minimum = rwymin/(1+0.5*TMath::Log10(rwymax/rwymin)); maximum = rwymax*(1+0.2*TMath::Log10(rwymax/rwymin)); } else { minimum = rwymin - dy; maximum = rwymax + dy; } if (minimum < 0 && rwymin >= 0) minimum = 0; if (maximum > 0 && rwymax <= 0) maximum = 0; } if (fMinimum != -1111) rwymin = minimum = fMinimum; if (fMaximum != -1111) rwymax = maximum = fMaximum; if (uxmin < 0 && rwxmin >= 0) { if (gPad->GetLogx()) uxmin = 0.9*rwxmin; //else uxmin = 0; } if (uxmax > 0 && rwxmax <= 0) { if (gPad->GetLogx()) uxmax = 1.1*rwxmax; //else uxmax = 0; } if (minimum < 0 && rwymin >= 0) { if(gPad->GetLogy()) minimum = 0.9*rwymin; //else minimum = 0; } if (maximum > 0 && rwymax <= 0) { if(gPad->GetLogy()) maximum = 1.1*rwymax; //else maximum = 0; } if (minimum <= 0 && gPad->GetLogy()) minimum = 0.001*maximum; if (uxmin <= 0 && gPad->GetLogx()) { if (uxmax > 1000) uxmin = 1; else uxmin = 0.001*uxmax; } rwymin = minimum; rwymax = maximum; if (fHistogram) { fHistogram->GetYaxis()->SetLimits(rwymin,rwymax); } // Create a temporary histogram to draw the axis if (!fHistogram) { // the graph is created with at least as many channels as there are points // to permit zooming on the full range rwxmin = uxmin; rwxmax = uxmax; fHistogram = new TH1F(GetName(),GetTitle(),npt,rwxmin,rwxmax); if (!fHistogram) return; fHistogram->SetMinimum(rwymin); fHistogram->SetBit(TH1::kNoStats); fHistogram->SetMaximum(rwymax); fHistogram->GetYaxis()->SetLimits(rwymin,rwymax); fHistogram->SetDirectory(0); if (xtitle) {fHistogram->GetXaxis()->SetTitle(xtitle); delete [] xtitle;} if (ytitle) {fHistogram->GetYaxis()->SetTitle(ytitle); delete [] ytitle;} if (firstx != lastx) fHistogram->GetXaxis()->SetRange(firstx,lastx); } fHistogram->Paint("0"); } TGraph *gfit = 0; if (fGraphs) { TObjOptLink *lnk = (TObjOptLink*)fGraphs->FirstLink(); TObject *obj = 0; while (lnk) { obj = lnk->GetObject(); if (strlen(lnk->GetOption())) obj->Paint(lnk->GetOption()); else obj->Paint(chopt); lnk = (TObjOptLink*)lnk->Next(); } gfit = (TGraph*)obj; // pick one TGraph in the list to paint the fit parameters. } TObject *f; TF1 *fit = 0; if (fFunctions) { TIter next(fFunctions); while ((f = (TObject*) next())) { if (f->InheritsFrom(TF1::Class())) { if (f->TestBit(TF1::kNotDraw) == 0) f->Paint("lsame"); fit = (TF1*)f; } else { f->Paint(); } } } if (fit) gfit->PaintStats(fit); } //______________________________________________________________________________ void TMultiGraph::Print(Option_t *option) const { // Print the list of graphs TGraph *g; if (fGraphs) { TIter next(fGraphs); while ((g = (TGraph*) next())) { g->Print(option); } } } //______________________________________________________________________________ void TMultiGraph::RecursiveRemove(TObject *obj) { // Recursively remove this object from a list. Typically implemented // by classes that can contain mulitple references to a same object. if (!fGraphs) return; TObject *objr = fGraphs->Remove(obj); if (!objr) return; delete fHistogram; fHistogram = 0; if (gPad) gPad->Modified(); } //______________________________________________________________________________ void TMultiGraph::SavePrimitive(ostream &out, Option_t *option /*= ""*/) { // Save primitive as a C++ statement(s) on output stream out char quote = '"'; out<<" "<<endl; if (gROOT->ClassSaved(TMultiGraph::Class())) { out<<" "; } else { out<<" TMultiGraph *"; } out<<"multigraph = new TMultiGraph();"<<endl; out<<" multigraph->SetName("<<quote<<GetName()<<quote<<");"<<endl; out<<" multigraph->SetTitle("<<quote<<GetTitle()<<quote<<");"<<endl; if (fGraphs) { TObjOptLink *lnk = (TObjOptLink*)fGraphs->FirstLink(); TObject *g; while (lnk) { g = lnk->GetObject(); g->SavePrimitive(out, Form("multigraph%s",lnk->GetOption())); lnk = (TObjOptLink*)lnk->Next(); } } const char *l = strstr(option,"th2poly"); if (l) { out<<" "<<l+7<<"->AddBin(multigraph);"<<endl; } else { out<<" multigraph->Draw(" <<quote<<option<<quote<<");"<<endl; } TAxis *xaxis = GetXaxis(); TAxis *yaxis = GetYaxis(); if (xaxis) xaxis->SaveAttributes(out, "multigraph","->GetXaxis()"); if (yaxis) yaxis->SaveAttributes(out, "multigraph","->GetYaxis()"); } //______________________________________________________________________________ void TMultiGraph::SetMaximum(Double_t maximum) { // Set multigraph maximum. fMaximum = maximum; if (fHistogram) fHistogram->SetMaximum(maximum); } //______________________________________________________________________________ void TMultiGraph::SetMinimum(Double_t minimum) { // Set multigraph minimum. fMinimum = minimum; if (fHistogram) fHistogram->SetMinimum(minimum); }