ROOT logo
/*****************************************************************************
 * Project: RooFit                                                           *
 * Package: RooFitCore                                                       *
 * @(#)root/roofitcore:$Id: RooAdaptiveGaussKronrodIntegrator1D.cxx 38909 2011-04-18 21:05:15Z wouter $
 * Authors:                                                                  *
 *   WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu       *
 *   DK, David Kirkby,    UC Irvine,         dkirkby@uci.edu                 *
 *                                                                           *
 * Copyright (c) 2000-2005, Regents of the University of California          *
 *                          and Stanford University. All rights reserved.    *
 *                                                                           *
 * Redistribution and use in source and binary forms,                        *
 * with or without modification, are permitted according to the terms        *
 * listed in LICENSE (http://roofit.sourceforge.net/license.txt)             *
 *****************************************************************************/

//////////////////////////////////////////////////////////////////////////////
// 
// BEGIN_HTML
// RooAdaptiveGaussKronrodIntegrator1D implements the Gauss-Kronrod integration algorithm.
//
// An adaptive Gaussian quadrature method for numerical integration in
// which error is estimation based on evaluation at special points
// known as "Kronrod points."  By suitably picking these points,
// abscissas from previous iterations can be reused as part of the new
// set of points, whereas usual Gaussian quadrature would require
// recomputation of all abscissas at each iteration.
//
// This class automatically handles (-inf,+inf) integrals by dividing
// the integration in three regions (-inf,-1), (-1,1), (1,inf) and
// calculating the 1st and 3rd term using a x -> 1/x coordinate
// transformation
//
// This class embeds the adaptive Gauss-Kronrod integrator from the
// GNU Scientific Library version 1.5 and applies a chosen rule ( 10-,
// 21-, 31-, 41, 51- or 61-point). The integration domain is
// subdivided and recursively integrated until the required precision
// is reached.
//
// For integrands with integrable singulaties the Wynn epsilon rule
// can be selected to speed up the converges of these integrals
// END_HTML
//

#include "RooFit.h"

#include <assert.h>
#include <stdlib.h>
#include "TClass.h"
#include "Riostream.h"
#include "RooAdaptiveGaussKronrodIntegrator1D.h"
#include "RooArgSet.h"
#include "RooRealVar.h"
#include "RooNumber.h"
#include "RooNumIntFactory.h"
#include "RooIntegratorBinding.h"
#include "TMath.h"
#include "RooMsgService.h"

using namespace std ;


ClassImp(RooAdaptiveGaussKronrodIntegrator1D)
;


// --- From GSL_MATH.h -------------------------------------------
struct gsl_function_struct
{
  double (* function) (double x, void * params);
  void * params;
};
typedef struct gsl_function_struct gsl_function ;
#define GSL_FN_EVAL(F,x) (*((F)->function))(x,(F)->params)

//----From GSL_INTEGRATION.h ---------------------------------------
typedef struct
  {
    size_t limit;
    size_t size;
    size_t nrmax;
    size_t i;
    size_t maximum_level;
    double *alist;
    double *blist;
    double *rlist;
    double *elist;
    size_t *order;
    size_t *level;
  }
gsl_integration_workspace;

gsl_integration_workspace *
  gsl_integration_workspace_alloc (const size_t n);

void
  gsl_integration_workspace_free (gsl_integration_workspace * w);

int gsl_integration_qag (const gsl_function * f,
                         double a, double b,
                         double epsabs, double epsrel, size_t limit,
                         int key,
                         gsl_integration_workspace * workspace,
                         double *result, double *abserr);

int
gsl_integration_qags (const gsl_function *f,
                      double a, double b,
                      double epsabs, double epsrel, size_t limit,
                      gsl_integration_workspace * workspace,
                      double * result, double * abserr) ;

int
gsl_integration_qagi (gsl_function * f,
                      double epsabs, double epsrel, size_t limit,
                      gsl_integration_workspace * workspace,
                      double *result, double *abserr) ;

int
gsl_integration_qagil (gsl_function * f,
                       double b,
                       double epsabs, double epsrel, size_t limit,
                       gsl_integration_workspace * workspace,
                       double *result, double *abserr) ;

int
gsl_integration_qagiu (gsl_function * f,
                       double a,
                       double epsabs, double epsrel, size_t limit,
                       gsl_integration_workspace * workspace,
                       double *result, double *abserr) ;


//-------------------------------------------------------------------


//_____________________________________________________________________________
void RooAdaptiveGaussKronrodIntegrator1D::registerIntegrator(RooNumIntFactory& fact)
{
  // Register this class with RooNumIntConfig as a possible choice of numeric
  // integrator for one-dimensional integrals over finite and infinite domains

  RooRealVar maxSeg("maxSeg","maximum number of segments",100) ;
  RooCategory method("method","Integration method for each segment") ;
  method.defineType("WynnEpsilon",0) ;
  method.defineType("15Points",1) ;
  method.defineType("21Points",2) ;
  method.defineType("31Points",3) ;
  method.defineType("41Points",4) ;
  method.defineType("51Points",5) ;
  method.defineType("61Points",6) ;
  method.setIndex(2) ;  
  fact.storeProtoIntegrator(new RooAdaptiveGaussKronrodIntegrator1D(),RooArgSet(maxSeg,method)) ;
}



//_____________________________________________________________________________
RooAdaptiveGaussKronrodIntegrator1D::RooAdaptiveGaussKronrodIntegrator1D() : _x(0), _workspace(0)
{
  // coverity[UNINIT_CTOR]
  // Default constructor
}




//_____________________________________________________________________________
RooAdaptiveGaussKronrodIntegrator1D::RooAdaptiveGaussKronrodIntegrator1D(const RooAbsFunc& function, 
									 const RooNumIntConfig& config) :
  RooAbsIntegrator(function),
  _epsAbs(config.epsRel()),
  _epsRel(config.epsAbs()),
  _workspace(0)
{  
  // Constructor taking a function binding and a configuration object
  
  // Use this form of the constructor to integrate over the function's default range.
  const RooArgSet& confSet = config.getConfigSection(IsA()->GetName()) ;  
  _maxSeg = (Int_t) confSet.getRealValue("maxSeg",100) ;
  _methodKey = confSet.getCatIndex("method",2) ;

  _useIntegrandLimits= kTRUE;
  _valid= initialize();
} 



//_____________________________________________________________________________
RooAdaptiveGaussKronrodIntegrator1D::RooAdaptiveGaussKronrodIntegrator1D(const RooAbsFunc& function, 
									 Double_t xmin, Double_t xmax,
									 const RooNumIntConfig& config) :
  RooAbsIntegrator(function),
  _epsAbs(config.epsRel()),
  _epsRel(config.epsAbs()),
  _workspace(0),
  _xmin(xmin),
  _xmax(xmax)
{  
  // Constructor taking a function binding, an integration range and a configuration object

  // Use this form of the constructor to integrate over the function's default range.
  const RooArgSet& confSet = config.getConfigSection(IsA()->GetName()) ;  
  _maxSeg = (Int_t) confSet.getRealValue("maxSeg",100) ;
  _methodKey = confSet.getCatIndex("method",2) ;
  
  _useIntegrandLimits= kFALSE;
  _valid= initialize();
} 



//_____________________________________________________________________________
RooAbsIntegrator* RooAdaptiveGaussKronrodIntegrator1D::clone(const RooAbsFunc& function, const RooNumIntConfig& config) const
{
  // Virtual constructor 
  return new RooAdaptiveGaussKronrodIntegrator1D(function,config) ;
}



//_____________________________________________________________________________
Bool_t RooAdaptiveGaussKronrodIntegrator1D::initialize()
{
  // Initialize integrator allocate buffers and setup GSL workspace

  // Allocate coordinate buffer size after number of function dimensions
  _x = new Double_t[_function->getDimension()] ;
  _workspace = gsl_integration_workspace_alloc (_maxSeg)  ;
  
  return checkLimits();
}



//_____________________________________________________________________________
RooAdaptiveGaussKronrodIntegrator1D::~RooAdaptiveGaussKronrodIntegrator1D()
{
  // Destructor.

  if (_workspace) {
    gsl_integration_workspace_free ((gsl_integration_workspace*) _workspace) ;
  }
  if (_x) {
    delete[] _x ;
  }
}



//_____________________________________________________________________________
Bool_t RooAdaptiveGaussKronrodIntegrator1D::setLimits(Double_t* xmin, Double_t* xmax) 
{
  // Change our integration limits. Return kTRUE if the new limits are
  // ok, or otherwise kFALSE. Always returns kFALSE and does nothing
  // if this object was constructed to always use our integrand's limits.

  if(_useIntegrandLimits) {
    coutE(Integration) << "RooAdaptiveGaussKronrodIntegrator1D::setLimits: cannot override integrand's limits" << endl;
    return kFALSE;
  }

  _xmin= *xmin;
  _xmax= *xmax;
  return checkLimits();
}



//_____________________________________________________________________________
Bool_t RooAdaptiveGaussKronrodIntegrator1D::checkLimits() const 
{
  // Check that our integration range is finite and otherwise return kFALSE.
  // Update the limits from the integrand if requested.
  
  if(_useIntegrandLimits) {
    assert(0 != integrand() && integrand()->isValid());
    _xmin= integrand()->getMinLimit(0);
    _xmax= integrand()->getMaxLimit(0);
  }

  // Determine domain type
  Bool_t infLo= RooNumber::isInfinite(_xmin);
  Bool_t infHi= RooNumber::isInfinite(_xmax);

  if (!infLo && !infHi) {
    _domainType = Closed ;
  } else if (infLo && infHi) {
    _domainType = Open ;
  } else if (infLo && !infHi) {
    _domainType = OpenLo ;
  } else {
    _domainType = OpenHi ;
  }


  return kTRUE ;
}



//_____________________________________________________________________________
double RooAdaptiveGaussKronrodIntegrator1D_GSL_GlueFunction(double x, void *data) 
{
  // Glue function interacing to GSL code
  RooAdaptiveGaussKronrodIntegrator1D* instance = (RooAdaptiveGaussKronrodIntegrator1D*) data ;
  return instance->integrand(instance->xvec(x)) ;
}



//_____________________________________________________________________________
Double_t RooAdaptiveGaussKronrodIntegrator1D::integral(const Double_t *yvec) 
{
  // Calculate and return integral at at given parameter values

  assert(isValid());

  // Copy yvec to xvec if provided
  if (yvec) {
    UInt_t i ; for (i=0 ; i<_function->getDimension()-1 ; i++) {
      _x[i+1] = yvec[i] ;
    }
  }

  // Setup glue function
  gsl_function F;
  F.function = &RooAdaptiveGaussKronrodIntegrator1D_GSL_GlueFunction ;
  F.params = this ;

  // Return values
  double result, error;

  // Call GSL implementation of integeator  
  switch(_domainType) {
  case Closed:
    if (_methodKey==0) {
      gsl_integration_qags (&F, _xmin, _xmax, _epsAbs, _epsRel, _maxSeg, (gsl_integration_workspace*)_workspace,&result, &error); 
    } else {
      gsl_integration_qag (&F, _xmin, _xmax, _epsAbs, _epsRel, _maxSeg, _methodKey, (gsl_integration_workspace*)_workspace,&result, &error); 
    }
    break ;
  case OpenLo:
    gsl_integration_qagil (&F, _xmax, _epsAbs, _epsRel, _maxSeg, (gsl_integration_workspace*)_workspace,&result, &error); 
    break ;
  case OpenHi:
    gsl_integration_qagiu (&F, _xmin, _epsAbs, _epsRel, _maxSeg, (gsl_integration_workspace*)_workspace,&result, &error); 
    break ;
  case Open:
    gsl_integration_qagi (&F, _epsAbs, _epsRel, _maxSeg, (gsl_integration_workspace*)_workspace,&result, &error); 
    break ;
  }

  return result;
}


// ----------------------------------------------------------------------------
// ---------- Code below imported from GSL version 1.5 ------------------------
// ----------------------------------------------------------------------------

/*
 * 
 * Copyright (C) 1996, 1997, 1998, 1999, 2000 Brian Gough
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#define GSL_SUCCESS 0
#define GSL_EDOM     1  /* input domain error, e.g sqrt(-1) */
#define GSL_ENOMEM   8  /* malloc failed */
#define GSL_EBADTOL 13  /* user specified an invalid tolerance */
#define GSL_ETOL    14  /* failed to reach the specified tolerance */
#define GSL_ERROR(a,b) oocoutE((TObject*)0,Integration) << "RooAdaptiveGaussKronrodIntegrator1D::integral() ERROR: " << a << endl ; return b ;
#define GSL_DBL_MIN        2.2250738585072014e-308
#define GSL_DBL_MAX        1.7976931348623157e+308
#define GSL_DBL_EPSILON    2.2204460492503131e-16

#define GSL_EINVAL 2 
#define GSL_EMAXITER 3 
#define GSL_ESING 4 
#define GSL_EFAILED 5 
#define GSL_EDIVERGE 6 
#define GSL_EROUND 7 

#define GSL_ERROR_VAL(reason, gsl_errno, value) return value ;

#define GSL_MAX(a,b) ((a) > (b) ? (a) : (b))
extern inline double
GSL_MAX_DBL (double a, double b)
{
  return GSL_MAX (a, b);
}

double gsl_coerce_double (const double x);

double
gsl_coerce_double (const double x)
{
  volatile double y;
  y = x;
  return y;
}
#define GSL_COERCE_DBL(x) (gsl_coerce_double(x))

// INCLUDED BELOW #include <gsl/gsl_integration.h>


/* Workspace for adaptive integrators */
// WVE MOVED TO HEAD OF FILE


/* Definition of an integration rule */

typedef void gsl_integration_rule (const gsl_function * f,
                                   double a, double b,
                                   double *result, double *abserr,
                                   double *defabs, double *resabs);

void gsl_integration_qk15 (const gsl_function * f, double a, double b,
                           double *result, double *abserr,
                           double *resabs, double *resasc);

void gsl_integration_qk21 (const gsl_function * f, double a, double b,
                           double *result, double *abserr,
                           double *resabs, double *resasc);

void gsl_integration_qk31 (const gsl_function * f, double a, double b,
                           double *result, double *abserr,
                           double *resabs, double *resasc);

void gsl_integration_qk41 (const gsl_function * f, double a, double b,
                           double *result, double *abserr,
                           double *resabs, double *resasc);

void gsl_integration_qk51 (const gsl_function * f, double a, double b,
                           double *result, double *abserr,
                           double *resabs, double *resasc);

void gsl_integration_qk61 (const gsl_function * f, double a, double b,
                           double *result, double *abserr,
                           double *resabs, double *resasc);

void gsl_integration_qcheb (gsl_function * f, double a, double b, 
                            double *cheb12, double *cheb24);

/* The low-level integration rules in QUADPACK are identified by small
   integers (1-6). We'll use symbolic constants to refer to them.  */

enum
  {
    GSL_INTEG_GAUSS15 = 1,      /* 15 point Gauss-Kronrod rule */
    GSL_INTEG_GAUSS21 = 2,      /* 21 point Gauss-Kronrod rule */
    GSL_INTEG_GAUSS31 = 3,      /* 31 point Gauss-Kronrod rule */
    GSL_INTEG_GAUSS41 = 4,      /* 41 point Gauss-Kronrod rule */
    GSL_INTEG_GAUSS51 = 5,      /* 51 point Gauss-Kronrod rule */
    GSL_INTEG_GAUSS61 = 6       /* 61 point Gauss-Kronrod rule */
  };


void
gsl_integration_qk (const int n, const double xgk[],
                    const double wg[], const double wgk[],
                    double fv1[], double fv2[],
                    const gsl_function *f, double a, double b,
                    double * result, double * abserr,
                    double * resabs, double * resasc);


int gsl_integration_qag (const gsl_function * f,
                         double a, double b,
                         double epsabs, double epsrel, size_t limit,
                         int key,
                         gsl_integration_workspace * workspace,
                         double *result, double *abserr);


// INCLUDED BELOW #include "initialise.c"
static inline
void initialise (gsl_integration_workspace * workspace, double a, double b);

static inline
void initialise (gsl_integration_workspace * workspace, double a, double b)
{
  workspace->size = 0;
  workspace->nrmax = 0;
  workspace->i = 0;
  workspace->alist[0] = a;
  workspace->blist[0] = b;
  workspace->rlist[0] = 0.0;
  workspace->elist[0] = 0.0;
  workspace->order[0] = 0;
  workspace->level[0] = 0;

  workspace->maximum_level = 0;
}

// INCLUDED BELOW #include "set_initial.c"
static inline
void set_initial_result (gsl_integration_workspace * workspace, 
                         double result, double error);

static inline
void set_initial_result (gsl_integration_workspace * workspace, 
                         double result, double error)
{
  workspace->size = 1;
  workspace->rlist[0] = result;
  workspace->elist[0] = error;
}

// INCLUDED BELOW #include "qpsrt.c"
static inline void 
qpsrt (gsl_integration_workspace * workspace);

static inline
void qpsrt (gsl_integration_workspace * workspace)
{
  const size_t last = workspace->size - 1;
  const size_t limit = workspace->limit;

  double * elist = workspace->elist;
  size_t * order = workspace->order;

  double errmax ;
  double errmin ;
  int i, k, top;

  size_t i_nrmax = workspace->nrmax;
  size_t i_maxerr = order[i_nrmax] ;
  
  /* Check whether the list contains more than two error estimates */

  if (last < 2) 
    {
      order[0] = 0 ;
      order[1] = 1 ;
      workspace->i = i_maxerr ;
      return ;
    }

  errmax = elist[i_maxerr] ;

  /* This part of the routine is only executed if, due to a difficult
     integrand, subdivision increased the error estimate. In the normal
     case the insert procedure should start after the nrmax-th largest
     error estimate. */

  while (i_nrmax > 0 && errmax > elist[order[i_nrmax - 1]]) 
    {
      order[i_nrmax] = order[i_nrmax - 1] ;
      i_nrmax-- ;
    } 

  /* Compute the number of elements in the list to be maintained in
     descending order. This number depends on the number of
     subdivisions still allowed. */
  
  if(last < (limit/2 + 2)) 
    {
      top = last ;
    }
  else
    {
      top = limit - last + 1;
    }
  
  /* Insert errmax by traversing the list top-down, starting
     comparison from the element elist(order(i_nrmax+1)). */
  
  i = i_nrmax + 1 ;
  
  /* The order of the tests in the following line is important to
     prevent a segmentation fault */

  while (i < top && errmax < elist[order[i]])
    {
      order[i-1] = order[i] ;
      i++ ;
    }
  
  order[i-1] = i_maxerr ;
  
  /* Insert errmin by traversing the list bottom-up */
  
  errmin = elist[last] ;
  
  k = top - 1 ;
  
  while (k > i - 2 && errmin >= elist[order[k]])
    {
      order[k+1] = order[k] ;
      k-- ;
    }
  
  order[k+1] = last ;

  /* Set i_max and e_max */

  i_maxerr = order[i_nrmax] ;
  
  workspace->i = i_maxerr ;
  workspace->nrmax = i_nrmax ;
}



// INCLUDED BELOW #include "util.c"
static inline
void update (gsl_integration_workspace * workspace,
                 double a1, double b1, double area1, double error1,
                 double a2, double b2, double area2, double error2);

static inline void
retrieve (const gsl_integration_workspace * workspace, 
          double * a, double * b, double * r, double * e);



static inline
void update (gsl_integration_workspace * workspace,
             double a1, double b1, double area1, double error1,
             double a2, double b2, double area2, double error2)
{
  double * alist = workspace->alist ;
  double * blist = workspace->blist ;
  double * rlist = workspace->rlist ;
  double * elist = workspace->elist ;
  size_t * level = workspace->level ;

  const size_t i_max = workspace->i ;
  const size_t i_new = workspace->size ;

  const size_t new_level = workspace->level[i_max] + 1;

  /* append the newly-created intervals to the list */
  
  if (error2 > error1)
    {
      alist[i_max] = a2;        /* blist[maxerr] is already == b2 */
      rlist[i_max] = area2;
      elist[i_max] = error2;
      level[i_max] = new_level;
      
      alist[i_new] = a1;
      blist[i_new] = b1;
      rlist[i_new] = area1;
      elist[i_new] = error1;
      level[i_new] = new_level;
    }
  else
    {
      blist[i_max] = b1;        /* alist[maxerr] is already == a1 */
      rlist[i_max] = area1;
      elist[i_max] = error1;
      level[i_max] = new_level;
      
      alist[i_new] = a2;
      blist[i_new] = b2;
      rlist[i_new] = area2;
      elist[i_new] = error2;
      level[i_new] = new_level;
    }
  
  workspace->size++;

  if (new_level > workspace->maximum_level)
    {
      workspace->maximum_level = new_level;
    }

  qpsrt (workspace) ;
}

static inline void
retrieve (const gsl_integration_workspace * workspace, 
          double * a, double * b, double * r, double * e)
{
  const size_t i = workspace->i;
  double * alist = workspace->alist;
  double * blist = workspace->blist;
  double * rlist = workspace->rlist;
  double * elist = workspace->elist;

  *a = alist[i] ;
  *b = blist[i] ;
  *r = rlist[i] ;
  *e = elist[i] ;
}

static inline double
sum_results (const gsl_integration_workspace * workspace);

static inline double
sum_results (const gsl_integration_workspace * workspace)
{
  const double * const rlist = workspace->rlist ;
  const size_t n = workspace->size;

  size_t k;
  double result_sum = 0;

  for (k = 0; k < n; k++)
    {
      result_sum += rlist[k];
    }
  
  return result_sum;
}

static inline int
subinterval_too_small (double a1, double a2, double b2);

static inline int
subinterval_too_small (double a1, double a2, double b2)
{
  const double e = GSL_DBL_EPSILON;
  const double u = GSL_DBL_MIN;

  double tmp = (1 + 100 * e) * (fabs (a2) + 1000 * u);

  int status = fabs (a1) <= tmp && fabs (b2) <= tmp;

  return status;
}


static int
qag (const gsl_function *f,
     const double a, const double b,
     const double epsabs, const double epsrel,
     const size_t limit,
     gsl_integration_workspace * workspace,
     double * result, double * abserr,
     gsl_integration_rule * q) ;

int
gsl_integration_qag (const gsl_function *f,
                     double a, double b,
                     double epsabs, double epsrel, size_t limit,
                     int key,
                     gsl_integration_workspace * workspace,
                     double * result, double * abserr)
{
  int status ;
  gsl_integration_rule * integration_rule = gsl_integration_qk15 ;

  if (key < GSL_INTEG_GAUSS15)
    {
      key = GSL_INTEG_GAUSS15 ;
    } 
  else if (key > GSL_INTEG_GAUSS61) 
    {
      key = GSL_INTEG_GAUSS61 ;
    }

  switch (key) 
    {
    case GSL_INTEG_GAUSS15:
      integration_rule = gsl_integration_qk15 ;
      break ;
    case GSL_INTEG_GAUSS21:
      integration_rule = gsl_integration_qk21 ;
      break ;
    case GSL_INTEG_GAUSS31:
      integration_rule = gsl_integration_qk31 ; 
      break ;
    case GSL_INTEG_GAUSS41:
      integration_rule = gsl_integration_qk41 ;
      break ;      
    case GSL_INTEG_GAUSS51:
      integration_rule = gsl_integration_qk51 ;
      break ;      
    case GSL_INTEG_GAUSS61:
      integration_rule = gsl_integration_qk61 ;
      break ;      
    }

  status = qag (f, a, b, epsabs, epsrel, limit,
                workspace, 
                result, abserr, 
                integration_rule) ;
  
  return status ;
}

static int
qag (const gsl_function * f,
     const double a, const double b,
     const double epsabs, const double epsrel,
     const size_t limit,
     gsl_integration_workspace * workspace,
     double *result, double *abserr,
     gsl_integration_rule * q)
{
  double area, errsum;
  double result0, abserr0, resabs0, resasc0;
  double tolerance;
  size_t iteration = 0;
  int roundoff_type1 = 0, roundoff_type2 = 0, error_type = 0;

  double round_off;     

  /* Initialize results */

  initialise (workspace, a, b);

  *result = 0;
  *abserr = 0;

  if (limit > workspace->limit)
    {
      GSL_ERROR ("iteration limit exceeds available workspace", GSL_EINVAL) ;
    }

  if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28))
    {
      GSL_ERROR ("tolerance cannot be acheived with given epsabs and epsrel",
                 GSL_EBADTOL);
    }

  /* perform the first integration */

  q (f, a, b, &result0, &abserr0, &resabs0, &resasc0);

  set_initial_result (workspace, result0, abserr0);

  /* Test on accuracy */

  tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (result0));

  /* need IEEE rounding here to match original quadpack behavior */

  round_off = GSL_COERCE_DBL (50 * GSL_DBL_EPSILON * resabs0);

  if (abserr0 <= round_off && abserr0 > tolerance)
    {
      *result = result0;
      *abserr = abserr0;

      GSL_ERROR ("cannot reach tolerance because of roundoff error "
                 "on first attempt", GSL_EROUND);
    }
  else if ((abserr0 <= tolerance && abserr0 != resasc0) || abserr0 == 0.0)
    {
      *result = result0;
      *abserr = abserr0;

      return GSL_SUCCESS;
    }
  else if (limit == 1)
    {
      *result = result0;
      *abserr = abserr0;

      GSL_ERROR ("a maximum of one iteration was insufficient", GSL_EMAXITER);
    }

  area = result0;
  errsum = abserr0;

  iteration = 1;

  do
    {
      double a1, b1, a2, b2;
      double a_i, b_i, r_i, e_i;
      double area1 = 0, area2 = 0, area12 = 0;
      double error1 = 0, error2 = 0, error12 = 0;
      double resasc1, resasc2;
      double resabs1, resabs2;

      /* Bisect the subinterval with the largest error estimate */

      retrieve (workspace, &a_i, &b_i, &r_i, &e_i);

      a1 = a_i; 
      b1 = 0.5 * (a_i + b_i);
      a2 = b1;
      b2 = b_i;

      q (f, a1, b1, &area1, &error1, &resabs1, &resasc1);
      q (f, a2, b2, &area2, &error2, &resabs2, &resasc2);

      area12 = area1 + area2;
      error12 = error1 + error2;

      errsum += (error12 - e_i);
      area += area12 - r_i;

      if (resasc1 != error1 && resasc2 != error2)
        {
          double delta = r_i - area12;

          if (fabs (delta) <= 1.0e-5 * fabs (area12) && error12 >= 0.99 * e_i)
            {
              roundoff_type1++;
            }
          if (iteration >= 10 && error12 > e_i)
            {
              roundoff_type2++;
            }
        }

      tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (area));

      if (errsum > tolerance)
        {
          if (roundoff_type1 >= 6 || roundoff_type2 >= 20)
            {
              error_type = 2;   /* round off error */
            }

          /* set error flag in the case of bad integrand behaviour at
             a point of the integration range */

          if (subinterval_too_small (a1, a2, b2))
            {
              error_type = 3;
            }
        }

      update (workspace, a1, b1, area1, error1, a2, b2, area2, error2);

      retrieve (workspace, &a_i, &b_i, &r_i, &e_i);

      iteration++;

    }
  while (iteration < limit && !error_type && errsum > tolerance);

  *result = sum_results (workspace);
  *abserr = errsum;

  if (errsum <= tolerance)
    {
      return GSL_SUCCESS;
    }
  else if (error_type == 2)
    {
      GSL_ERROR ("roundoff error prevents tolerance from being achieved",
                 GSL_EROUND);
    }
  else if (error_type == 3)
    {
      GSL_ERROR ("bad integrand behavior found in the integration interval",
                 GSL_ESING);
    }
  else if (iteration == limit)
    {
      GSL_ERROR ("maximum number of subdivisions reached", GSL_EMAXITER);
    }

  GSL_ERROR ("could not integrate function", GSL_EFAILED);
}


// INCLUDED BELOW #include "err.c"
static double rescale_error (double err, const double result_abs, const double result_asc) ;

static double
rescale_error (double err, const double result_abs, const double result_asc)
{
  err = fabs(err) ;

  if (result_asc != 0 && err != 0)
      {
        double scale = TMath::Power((200 * err / result_asc), 1.5) ;
        
        if (scale < 1)
          {
            err = result_asc * scale ;
          }
        else 
          {
            err = result_asc ;
          }
      }
  if (result_abs > GSL_DBL_MIN / (50 * GSL_DBL_EPSILON))
    {
      double min_err = 50 * GSL_DBL_EPSILON * result_abs ;

      if (min_err > err) 
        {
          err = min_err ;
        }
    }
  
  return err ;
}


void
gsl_integration_qk (const int n, 
                    const double xgk[], const double wg[], const double wgk[],
                    double fv1[], double fv2[],
                    const gsl_function * f, double a, double b,
                    double *result, double *abserr,
                    double *resabs, double *resasc)
{

  const double center = 0.5 * (a + b);
  const double half_length = 0.5 * (b - a);
  const double abs_half_length = fabs (half_length);
  const double f_center = GSL_FN_EVAL (f, center);

  double result_gauss = 0;
  double result_kronrod = f_center * wgk[n - 1];

  double result_abs = fabs (result_kronrod);
  double result_asc = 0;
  double mean = 0, err = 0;

  int j;

  if (n % 2 == 0)
    {
      result_gauss = f_center * wg[n / 2 - 1];
    }

  for (j = 0; j < (n - 1) / 2; j++)
    {
      const int jtw = j * 2 + 1;        /* j=1,2,3 jtw=2,4,6 */
      const double abscissa = half_length * xgk[jtw];
      const double fval1 = GSL_FN_EVAL (f, center - abscissa);
      const double fval2 = GSL_FN_EVAL (f, center + abscissa);
      const double fsum = fval1 + fval2;
      fv1[jtw] = fval1;
      fv2[jtw] = fval2;
      result_gauss += wg[j] * fsum;
      result_kronrod += wgk[jtw] * fsum;
      result_abs += wgk[jtw] * (fabs (fval1) + fabs (fval2));
    }

  for (j = 0; j < n / 2; j++)
    {
      int jtwm1 = j * 2;
      const double abscissa = half_length * xgk[jtwm1];
      const double fval1 = GSL_FN_EVAL (f, center - abscissa);
      const double fval2 = GSL_FN_EVAL (f, center + abscissa);
      fv1[jtwm1] = fval1;
      fv2[jtwm1] = fval2;
      result_kronrod += wgk[jtwm1] * (fval1 + fval2);
      result_abs += wgk[jtwm1] * (fabs (fval1) + fabs (fval2));
    };

  mean = result_kronrod * 0.5;

  result_asc = wgk[n - 1] * fabs (f_center - mean);

  for (j = 0; j < n - 1; j++)
    {
      result_asc += wgk[j] * (fabs (fv1[j] - mean) + fabs (fv2[j] - mean));
    }

  /* scale by the width of the integration region */

  err = (result_kronrod - result_gauss) * half_length;

  result_kronrod *= half_length;
  result_abs *= abs_half_length;
  result_asc *= abs_half_length;

  *result = result_kronrod;
  *resabs = result_abs;
  *resasc = result_asc;
  *abserr = rescale_error (err, result_abs, result_asc);

}

/* Gauss quadrature weights and kronrod quadrature abscissae and
   weights as evaluated with 80 decimal digit arithmetic by
   L. W. Fullerton, Bell Labs, Nov. 1981. */

static const double xgkA[8] =    /* abscissae of the 15-point kronrod rule */
{
  0.991455371120812639206854697526329,
  0.949107912342758524526189684047851,
  0.864864423359769072789712788640926,
  0.741531185599394439863864773280788,
  0.586087235467691130294144838258730,
  0.405845151377397166906606412076961,
  0.207784955007898467600689403773245,
  0.000000000000000000000000000000000
};

/* xgk[1], xgk[3], ... abscissae of the 7-point gauss rule. 
   xgk[0], xgk[2], ... abscissae to optimally extend the 7-point gauss rule */

static const double wgA[4] =     /* weights of the 7-point gauss rule */
{
  0.129484966168869693270611432679082,
  0.279705391489276667901467771423780,
  0.381830050505118944950369775488975,
  0.417959183673469387755102040816327
};

static const double wgkA[8] =    /* weights of the 15-point kronrod rule */
{
  0.022935322010529224963732008058970,
  0.063092092629978553290700663189204,
  0.104790010322250183839876322541518,
  0.140653259715525918745189590510238,
  0.169004726639267902826583426598550,
  0.190350578064785409913256402421014,
  0.204432940075298892414161999234649,
  0.209482141084727828012999174891714
};

void
gsl_integration_qk15 (const gsl_function * f, double a, double b,
      double *result, double *abserr,
      double *resabs, double *resasc)
{
  double fv1[8], fv2[8];
  // coverity[UNINIT_CTOR]
  gsl_integration_qk (8, xgkA, wgA, wgkA, fv1, fv2, f, a, b, result, abserr, resabs, resasc);
}

/* Gauss quadrature weights and kronrod quadrature abscissae and
   weights as evaluated with 80 decimal digit arithmetic by
   L. W. Fullerton, Bell Labs, Nov. 1981. */

static const double xgkB[11] =   /* abscissae of the 21-point kronrod rule */
{
  0.995657163025808080735527280689003,
  0.973906528517171720077964012084452,
  0.930157491355708226001207180059508,
  0.865063366688984510732096688423493,
  0.780817726586416897063717578345042,
  0.679409568299024406234327365114874,
  0.562757134668604683339000099272694,
  0.433395394129247190799265943165784,
  0.294392862701460198131126603103866,
  0.148874338981631210884826001129720,
  0.000000000000000000000000000000000
};

/* xgk[1], xgk[3], ... abscissae of the 10-point gauss rule. 
   xgk[0], xgk[2], ... abscissae to optimally extend the 10-point gauss rule */

static const double wgB[5] =     /* weights of the 10-point gauss rule */
{
  0.066671344308688137593568809893332,
  0.149451349150580593145776339657697,
  0.219086362515982043995534934228163,
  0.269266719309996355091226921569469,
  0.295524224714752870173892994651338
};

static const double wgkB[11] =   /* weights of the 21-point kronrod rule */
{
  0.011694638867371874278064396062192,
  0.032558162307964727478818972459390,
  0.054755896574351996031381300244580,
  0.075039674810919952767043140916190,
  0.093125454583697605535065465083366,
  0.109387158802297641899210590325805,
  0.123491976262065851077958109831074,
  0.134709217311473325928054001771707,
  0.142775938577060080797094273138717,
  0.147739104901338491374841515972068,
  0.149445554002916905664936468389821
};


void
gsl_integration_qk21 (const gsl_function * f, double a, double b,
                      double *result, double *abserr,
                      double *resabs, double *resasc)
{
  double fv1[11], fv2[11];
  // coverity[UNINIT_CTOR]
  gsl_integration_qk (11, xgkB, wgB, wgkB, fv1, fv2, f, a, b, result, abserr, resabs, resasc);
}

/* Gauss quadrature weights and kronrod quadrature abscissae and
   weights as evaluated with 80 decimal digit arithmetic by
   L. W. Fullerton, Bell Labs, Nov. 1981. */

static const double xgkC[16] =   /* abscissae of the 31-point kronrod rule */
{
  0.998002298693397060285172840152271,
  0.987992518020485428489565718586613,
  0.967739075679139134257347978784337,
  0.937273392400705904307758947710209,
  0.897264532344081900882509656454496,
  0.848206583410427216200648320774217,
  0.790418501442465932967649294817947,
  0.724417731360170047416186054613938,
  0.650996741297416970533735895313275,
  0.570972172608538847537226737253911,
  0.485081863640239680693655740232351,
  0.394151347077563369897207370981045,
  0.299180007153168812166780024266389,
  0.201194093997434522300628303394596,
  0.101142066918717499027074231447392,
  0.000000000000000000000000000000000
};

/* xgk[1], xgk[3], ... abscissae of the 15-point gauss rule. 
   xgk[0], xgk[2], ... abscissae to optimally extend the 15-point gauss rule */

static const double wgC[8] =     /* weights of the 15-point gauss rule */
{
  0.030753241996117268354628393577204,
  0.070366047488108124709267416450667,
  0.107159220467171935011869546685869,
  0.139570677926154314447804794511028,
  0.166269205816993933553200860481209,
  0.186161000015562211026800561866423,
  0.198431485327111576456118326443839,
  0.202578241925561272880620199967519
};

static const double wgkC[16] =   /* weights of the 31-point kronrod rule */
{
  0.005377479872923348987792051430128,
  0.015007947329316122538374763075807,
  0.025460847326715320186874001019653,
  0.035346360791375846222037948478360,
  0.044589751324764876608227299373280,
  0.053481524690928087265343147239430,
  0.062009567800670640285139230960803,
  0.069854121318728258709520077099147,
  0.076849680757720378894432777482659,
  0.083080502823133021038289247286104,
  0.088564443056211770647275443693774,
  0.093126598170825321225486872747346,
  0.096642726983623678505179907627589,
  0.099173598721791959332393173484603,
  0.100769845523875595044946662617570,
  0.101330007014791549017374792767493
};

void
gsl_integration_qk31 (const gsl_function * f, double a, double b,
      double *result, double *abserr,
      double *resabs, double *resasc)
{
  double fv1[16], fv2[16];
  // coverity[UNINIT_CTOR]
  gsl_integration_qk (16, xgkC, wgC, wgkC, fv1, fv2, f, a, b, result, abserr, resabs, resasc);
}

/* Gauss quadrature weights and kronrod quadrature abscissae and
   weights as evaluated with 80 decimal digit arithmetic by
   L. W. Fullerton, Bell Labs, Nov. 1981. */

static const double xgkD[21] =   /* abscissae of the 41-point kronrod rule */
{
  0.998859031588277663838315576545863,
  0.993128599185094924786122388471320,
  0.981507877450250259193342994720217,
  0.963971927277913791267666131197277,
  0.940822633831754753519982722212443,
  0.912234428251325905867752441203298,
  0.878276811252281976077442995113078,
  0.839116971822218823394529061701521,
  0.795041428837551198350638833272788,
  0.746331906460150792614305070355642,
  0.693237656334751384805490711845932,
  0.636053680726515025452836696226286,
  0.575140446819710315342946036586425,
  0.510867001950827098004364050955251,
  0.443593175238725103199992213492640,
  0.373706088715419560672548177024927,
  0.301627868114913004320555356858592,
  0.227785851141645078080496195368575,
  0.152605465240922675505220241022678,
  0.076526521133497333754640409398838,
  0.000000000000000000000000000000000
};

/* xgk[1], xgk[3], ... abscissae of the 20-point gauss rule. 
   xgk[0], xgk[2], ... abscissae to optimally extend the 20-point gauss rule */

static const double wgD[11] =    /* weights of the 20-point gauss rule */
{
  0.017614007139152118311861962351853,
  0.040601429800386941331039952274932,
  0.062672048334109063569506535187042,
  0.083276741576704748724758143222046,
  0.101930119817240435036750135480350,
  0.118194531961518417312377377711382,
  0.131688638449176626898494499748163,
  0.142096109318382051329298325067165,
  0.149172986472603746787828737001969,
  0.152753387130725850698084331955098
};

static const double wgkD[21] =   /* weights of the 41-point kronrod rule */
{
  0.003073583718520531501218293246031,
  0.008600269855642942198661787950102,
  0.014626169256971252983787960308868,
  0.020388373461266523598010231432755,
  0.025882133604951158834505067096153,
  0.031287306777032798958543119323801,
  0.036600169758200798030557240707211,
  0.041668873327973686263788305936895,
  0.046434821867497674720231880926108,
  0.050944573923728691932707670050345,
  0.055195105348285994744832372419777,
  0.059111400880639572374967220648594,
  0.062653237554781168025870122174255,
  0.065834597133618422111563556969398,
  0.068648672928521619345623411885368,
  0.071054423553444068305790361723210,
  0.073030690332786667495189417658913,
  0.074582875400499188986581418362488,
  0.075704497684556674659542775376617,
  0.076377867672080736705502835038061,
  0.076600711917999656445049901530102
};

void
gsl_integration_qk41 (const gsl_function * f, double a, double b,
                      double *result, double *abserr,
                      double *resabs, double *resasc)
{
  double fv1[21], fv2[21];
  // coverity[UNINIT]
  gsl_integration_qk (21, xgkD, wgD, wgkD, fv1, fv2, f, a, b, result, abserr, resabs, resasc);
}

/* Gauss quadrature weights and kronrod quadrature abscissae and
   weights as evaluated with 80 decimal digit arithmetic by
   L. W. Fullerton, Bell Labs, Nov. 1981. */

static const double xgkE[26] =   /* abscissae of the 51-point kronrod rule */
{
  0.999262104992609834193457486540341,
  0.995556969790498097908784946893902,
  0.988035794534077247637331014577406,
  0.976663921459517511498315386479594,
  0.961614986425842512418130033660167,
  0.942974571228974339414011169658471,
  0.920747115281701561746346084546331,
  0.894991997878275368851042006782805,
  0.865847065293275595448996969588340,
  0.833442628760834001421021108693570,
  0.797873797998500059410410904994307,
  0.759259263037357630577282865204361,
  0.717766406813084388186654079773298,
  0.673566368473468364485120633247622,
  0.626810099010317412788122681624518,
  0.577662930241222967723689841612654,
  0.526325284334719182599623778158010,
  0.473002731445714960522182115009192,
  0.417885382193037748851814394594572,
  0.361172305809387837735821730127641,
  0.303089538931107830167478909980339,
  0.243866883720988432045190362797452,
  0.183718939421048892015969888759528,
  0.122864692610710396387359818808037,
  0.061544483005685078886546392366797,
  0.000000000000000000000000000000000
};

/* xgk[1], xgk[3], ... abscissae of the 25-point gauss rule. 
   xgk[0], xgk[2], ... abscissae to optimally extend the 25-point gauss rule */

static const double wgE[13] =    /* weights of the 25-point gauss rule */
{
  0.011393798501026287947902964113235,
  0.026354986615032137261901815295299,
  0.040939156701306312655623487711646,
  0.054904695975835191925936891540473,
  0.068038333812356917207187185656708,
  0.080140700335001018013234959669111,
  0.091028261982963649811497220702892,
  0.100535949067050644202206890392686,
  0.108519624474263653116093957050117,
  0.114858259145711648339325545869556,
  0.119455763535784772228178126512901,
  0.122242442990310041688959518945852,
  0.123176053726715451203902873079050
};

static const double wgkE[26] =   /* weights of the 51-point kronrod rule */
{
  0.001987383892330315926507851882843,
  0.005561932135356713758040236901066,
  0.009473973386174151607207710523655,
  0.013236229195571674813656405846976,
  0.016847817709128298231516667536336,
  0.020435371145882835456568292235939,
  0.024009945606953216220092489164881,
  0.027475317587851737802948455517811,
  0.030792300167387488891109020215229,
  0.034002130274329337836748795229551,
  0.037116271483415543560330625367620,
  0.040083825504032382074839284467076,
  0.042872845020170049476895792439495,
  0.045502913049921788909870584752660,
  0.047982537138836713906392255756915,
  0.050277679080715671963325259433440,
  0.052362885806407475864366712137873,
  0.054251129888545490144543370459876,
  0.055950811220412317308240686382747,
  0.057437116361567832853582693939506,
  0.058689680022394207961974175856788,
  0.059720340324174059979099291932562,
  0.060539455376045862945360267517565,
  0.061128509717053048305859030416293,
  0.061471189871425316661544131965264,
  0.061580818067832935078759824240066
};

/* wgk[25] was calculated from the values of wgk[0..24] */

void
gsl_integration_qk51 (const gsl_function * f, double a, double b,
                      double *result, double *abserr,
                      double *resabs, double *resasc)
{
  double fv1[26], fv2[26];
  //coverity[UNINIT]
  gsl_integration_qk (26, xgkE, wgE, wgkE, fv1, fv2, f, a, b, result, abserr, resabs, resasc);
}

/* Gauss quadrature weights and kronrod quadrature abscissae and
   weights as evaluated with 80 decimal digit arithmetic by
   L. W. Fullerton, Bell Labs, Nov. 1981. */

static const double xgkF[31] =   /* abscissae of the 61-point kronrod rule */
{
  0.999484410050490637571325895705811,
  0.996893484074649540271630050918695,
  0.991630996870404594858628366109486,
  0.983668123279747209970032581605663,
  0.973116322501126268374693868423707,
  0.960021864968307512216871025581798,
  0.944374444748559979415831324037439,
  0.926200047429274325879324277080474,
  0.905573307699907798546522558925958,
  0.882560535792052681543116462530226,
  0.857205233546061098958658510658944,
  0.829565762382768397442898119732502,
  0.799727835821839083013668942322683,
  0.767777432104826194917977340974503,
  0.733790062453226804726171131369528,
  0.697850494793315796932292388026640,
  0.660061064126626961370053668149271,
  0.620526182989242861140477556431189,
  0.579345235826361691756024932172540,
  0.536624148142019899264169793311073,
  0.492480467861778574993693061207709,
  0.447033769538089176780609900322854,
  0.400401254830394392535476211542661,
  0.352704725530878113471037207089374,
  0.304073202273625077372677107199257,
  0.254636926167889846439805129817805,
  0.204525116682309891438957671002025,
  0.153869913608583546963794672743256,
  0.102806937966737030147096751318001,
  0.051471842555317695833025213166723,
  0.000000000000000000000000000000000
};

/* xgk[1], xgk[3], ... abscissae of the 30-point gauss rule. 
   xgk[0], xgk[2], ... abscissae to optimally extend the 30-point gauss rule */

static const double wgF[15] =    /* weights of the 30-point gauss rule */
{
  0.007968192496166605615465883474674,
  0.018466468311090959142302131912047,
  0.028784707883323369349719179611292,
  0.038799192569627049596801936446348,
  0.048402672830594052902938140422808,
  0.057493156217619066481721689402056,
  0.065974229882180495128128515115962,
  0.073755974737705206268243850022191,
  0.080755895229420215354694938460530,
  0.086899787201082979802387530715126,
  0.092122522237786128717632707087619,
  0.096368737174644259639468626351810,
  0.099593420586795267062780282103569,
  0.101762389748405504596428952168554,
  0.102852652893558840341285636705415
};

static const double wgkF[31] =   /* weights of the 61-point kronrod rule */
{
  0.001389013698677007624551591226760,
  0.003890461127099884051267201844516,
  0.006630703915931292173319826369750,
  0.009273279659517763428441146892024,
  0.011823015253496341742232898853251,
  0.014369729507045804812451432443580,
  0.016920889189053272627572289420322,
  0.019414141193942381173408951050128,
  0.021828035821609192297167485738339,
  0.024191162078080601365686370725232,
  0.026509954882333101610601709335075,
  0.028754048765041292843978785354334,
  0.030907257562387762472884252943092,
  0.032981447057483726031814191016854,
  0.034979338028060024137499670731468,
  0.036882364651821229223911065617136,
  0.038678945624727592950348651532281,
  0.040374538951535959111995279752468,
  0.041969810215164246147147541285970,
  0.043452539701356069316831728117073,
  0.044814800133162663192355551616723,
  0.046059238271006988116271735559374,
  0.047185546569299153945261478181099,
  0.048185861757087129140779492298305,
  0.049055434555029778887528165367238,
  0.049795683427074206357811569379942,
  0.050405921402782346840893085653585,
  0.050881795898749606492297473049805,
  0.051221547849258772170656282604944,
  0.051426128537459025933862879215781,
  0.051494729429451567558340433647099
};

void
gsl_integration_qk61 (const gsl_function * f, double a, double b,
                      double *result, double *abserr,
                      double *resabs, double *resasc)
{
  double fv1[31], fv2[31];
  //coverity[UNINIT]
  gsl_integration_qk (31, xgkF, wgF, wgkF, fv1, fv2, f, a, b, result, abserr, resabs, resasc);
}

gsl_integration_workspace*
gsl_integration_workspace_alloc (const size_t n) 
{
  gsl_integration_workspace* w ;
  
  if (n == 0)
    {
      GSL_ERROR_VAL ("workspace length n must be positive integer",
                        GSL_EDOM, 0);
    }

  w = (gsl_integration_workspace *) 
    malloc (sizeof (gsl_integration_workspace));

  if (w == 0)
    {
      GSL_ERROR_VAL ("failed to allocate space for workspace struct",
                        GSL_ENOMEM, 0);
    }

  w->alist = (double *) malloc (n * sizeof (double));

  if (w->alist == 0)
    {
      free (w);         /* exception in constructor, avoid memory leak */

      GSL_ERROR_VAL ("failed to allocate space for alist ranges",
                        GSL_ENOMEM, 0);
    }

  w->blist = (double *) malloc (n * sizeof (double));

  if (w->blist == 0)
    {
      free (w->alist);
      free (w);         /* exception in constructor, avoid memory leak */

      GSL_ERROR_VAL ("failed to allocate space for blist ranges",
                        GSL_ENOMEM, 0);
    }

  w->rlist = (double *) malloc (n * sizeof (double));

  if (w->rlist == 0)
    {
      free (w->blist);
      free (w->alist);
      free (w);         /* exception in constructor, avoid memory leak */

      GSL_ERROR_VAL ("failed to allocate space for rlist ranges",
                        GSL_ENOMEM, 0);
    }


  w->elist = (double *) malloc (n * sizeof (double));

  if (w->elist == 0)
    {
      free (w->rlist);
      free (w->blist);
      free (w->alist);
      free (w);         /* exception in constructor, avoid memory leak */

      GSL_ERROR_VAL ("failed to allocate space for elist ranges",
                        GSL_ENOMEM, 0);
    }

  w->order = (size_t *) malloc (n * sizeof (size_t));

  if (w->order == 0)
    {
      free (w->elist);
      free (w->rlist);
      free (w->blist);
      free (w->alist);
      free (w);         /* exception in constructor, avoid memory leak */

      GSL_ERROR_VAL ("failed to allocate space for order ranges",
                        GSL_ENOMEM, 0);
    }

  w->level = (size_t *) malloc (n * sizeof (size_t));

  if (w->level == 0)
    {
      free (w->order);
      free (w->elist);
      free (w->rlist);
      free (w->blist);
      free (w->alist);
      free (w);         /* exception in constructor, avoid memory leak */

      GSL_ERROR_VAL ("failed to allocate space for order ranges",
                        GSL_ENOMEM, 0);
    }

  w->size = 0 ;
  w->limit = n ;
  w->maximum_level = 0 ;
  
  return w ;
}

void
gsl_integration_workspace_free (gsl_integration_workspace * w)
{
  free (w->level) ;
  free (w->order) ;
  free (w->elist) ;
  free (w->rlist) ;
  free (w->blist) ;
  free (w->alist) ;
  free (w) ;
}



// INCLUDED BELOW #include "reset.c"
static inline void
reset_nrmax (gsl_integration_workspace * workspace);

static inline void
reset_nrmax (gsl_integration_workspace * workspace)
{
  workspace->nrmax = 0;
  workspace->i = workspace->order[0] ;
}


// INCLUDED BELOW #include "qpsrt2.c"
/* The smallest interval has the largest error.  Before bisecting
   decrease the sum of the errors over the larger intervals
   (error_over_large_intervals) and perform extrapolation. */

static int
increase_nrmax (gsl_integration_workspace * workspace);

static int
increase_nrmax (gsl_integration_workspace * workspace)
{
  int k;
  int id = workspace->nrmax;
  int jupbnd;

  const size_t * level = workspace->level;
  const size_t * order = workspace->order;

  size_t limit = workspace->limit ;
  size_t last = workspace->size - 1 ;

  if (last > (1 + limit / 2))
    {
      jupbnd = limit + 1 - last;
    }
  else
    {
      jupbnd = last;
    }
  
  for (k = id; k <= jupbnd; k++)
    {
      size_t i_max = order[workspace->nrmax];
      
      workspace->i = i_max ;

      if (level[i_max] < workspace->maximum_level)
        {
          return 1;
        }

      workspace->nrmax++;

    }
  return 0;
}

static int
large_interval (gsl_integration_workspace * workspace)
{
  size_t i = workspace->i ;
  const size_t * level = workspace->level;
  
  if (level[i] < workspace->maximum_level)
    {
      return 1 ;
    }
  else
    {
      return 0 ;
    }
}


// INCLUDED BELOW #include "qelg.c"
struct extrapolation_table
  {
    size_t n;
    double rlist2[52];
    size_t nres;
    double res3la[3];
  };

static void
  initialise_table (struct extrapolation_table *table);

static void
  append_table (struct extrapolation_table *table, double y);

static void
initialise_table (struct extrapolation_table *table)
{
  table->n = 0;
  table->nres = 0;
}
#ifdef JUNK
static void
initialise_table (struct extrapolation_table *table, double y)
{
  table->n = 0;
  table->rlist2[0] = y;
  table->nres = 0;
}
#endif
static void
append_table (struct extrapolation_table *table, double y)
{
  size_t n;
  n = table->n;
  table->rlist2[n] = y;
  table->n++;
}

/* static inline void
   qelg (size_t * n, double epstab[], 
   double * result, double * abserr, 
   double res3la[], size_t * nres); */

static inline void
  qelg (struct extrapolation_table *table, double *result, double *abserr);

static inline void
qelg (struct extrapolation_table *table, double *result, double *abserr)
{
  double *epstab = table->rlist2;
  double *res3la = table->res3la;
  const size_t n = table->n - 1;

  const double current = epstab[n];

  double absolute = GSL_DBL_MAX;
  double relative = 5 * GSL_DBL_EPSILON * fabs (current);

  const size_t newelm = n / 2;
  const size_t n_orig = n;
  size_t n_final = n;
  size_t i;

  const size_t nres_orig = table->nres;

  *result = current;
  *abserr = GSL_DBL_MAX;

  if (n < 2)
    {
      *result = current;
      *abserr = GSL_MAX_DBL (absolute, relative);
      return;
    }

  epstab[n + 2] = epstab[n];
  epstab[n] = GSL_DBL_MAX;

  for (i = 0; i < newelm; i++)
    {
      double res = epstab[n - 2 * i + 2];
      double e0 = epstab[n - 2 * i - 2];
      double e1 = epstab[n - 2 * i - 1];
      double e2 = res;

      double e1abs = fabs (e1);
      double delta2 = e2 - e1;
      double err2 = fabs (delta2);
      double tol2 = GSL_MAX_DBL (fabs (e2), e1abs) * GSL_DBL_EPSILON;
      double delta3 = e1 - e0;
      double err3 = fabs (delta3);
      double tol3 = GSL_MAX_DBL (e1abs, fabs (e0)) * GSL_DBL_EPSILON;

      double e3, delta1, err1, tol1, ss;

      if (err2 <= tol2 && err3 <= tol3)
        {
          /* If e0, e1 and e2 are equal to within machine accuracy,
             convergence is assumed.  */

          *result = res;
          absolute = err2 + err3;
          relative = 5 * GSL_DBL_EPSILON * fabs (res);
          *abserr = GSL_MAX_DBL (absolute, relative);
          return;
        }

      e3 = epstab[n - 2 * i];
      epstab[n - 2 * i] = e1;
      delta1 = e1 - e3;
      err1 = fabs (delta1);
      tol1 = GSL_MAX_DBL (e1abs, fabs (e3)) * GSL_DBL_EPSILON;

      /* If two elements are very close to each other, omit a part of
         the table by adjusting the value of n */

      if (err1 <= tol1 || err2 <= tol2 || err3 <= tol3)
        {
          n_final = 2 * i;
          break;
        }

      ss = (1 / delta1 + 1 / delta2) - 1 / delta3;

      /* Test to detect irregular behaviour in the table, and
         eventually omit a part of the table by adjusting the value of
         n. */

      if (fabs (ss * e1) <= 0.0001)
        {
          n_final = 2 * i;
          break;
        }

      /* Compute a new element and eventually adjust the value of
         result. */

      res = e1 + 1 / ss;
      epstab[n - 2 * i] = res;

      {
        const double error = err2 + fabs (res - e2) + err3;

        if (error <= *abserr)
          {
            *abserr = error;
            *result = res;
          }
      }
    }

  /* Shift the table */

  {
    const size_t limexp = 50 - 1;

    if (n_final == limexp)
      {
        n_final = 2 * (limexp / 2);
      }
  }

  if (n_orig % 2 == 1)
    {
      for (i = 0; i <= newelm; i++)
        {
          epstab[1 + i * 2] = epstab[i * 2 + 3];
        }
    }
  else
    {
      for (i = 0; i <= newelm; i++)
        {
          epstab[i * 2] = epstab[i * 2 + 2];
        }
    }

  if (n_orig != n_final)
    {
      for (i = 0; i <= n_final; i++)
        {
          epstab[i] = epstab[n_orig - n_final + i];
        }
    }

  table->n = n_final + 1;

  if (nres_orig < 3)
    {
      res3la[nres_orig] = *result;
      *abserr = GSL_DBL_MAX;
    }
  else
    {                           /* Compute error estimate */
      *abserr = (fabs (*result - res3la[2]) + fabs (*result - res3la[1])
                 + fabs (*result - res3la[0]));

      res3la[0] = res3la[1];
      res3la[1] = res3la[2];
      res3la[2] = *result;
    }

  /* In QUADPACK the variable table->nres is incremented at the top of
     qelg, so it increases on every call. This leads to the array
     res3la being accessed when its elements are still undefined, so I
     have moved the update to this point so that its value more
     useful. */

  table->nres = nres_orig + 1;  

  *abserr = GSL_MAX_DBL (*abserr, 5 * GSL_DBL_EPSILON * fabs (*result));

  return;
}


// INCLUDED BELOW #include "positivity.c"
/* Compare the integral of f(x) with the integral of |f(x)|
   to determine if f(x) covers both positive and negative values */

static inline int
test_positivity (double result, double resabs);

static inline int
test_positivity (double result, double resabs)
{
  int status = (fabs (result) >= (1 - 50 * GSL_DBL_EPSILON) * resabs);

  return status;
}

static int qags (const gsl_function * f, const double a, const double
  b, const double epsabs, const double epsrel, const size_t limit,
  gsl_integration_workspace * workspace, double *result, double *abserr,
  gsl_integration_rule * q);

int
gsl_integration_qags (const gsl_function *f,
                      double a, double b,
                      double epsabs, double epsrel, size_t limit,
                      gsl_integration_workspace * workspace,
                      double * result, double * abserr)
{
  int status = qags (f, a, b, epsabs, epsrel, limit,
                     workspace, 
                     result, abserr, 
                     &gsl_integration_qk21) ;
  return status ;
}

/* QAGI: evaluate an integral over an infinite range using the
   transformation

   integrate(f(x),-Inf,Inf) = integrate((f((1-t)/t) + f(-(1-t)/t))/t^2,0,1)

   */

static double i_transform (double t, void *params);

int
gsl_integration_qagi (gsl_function * f,
                      double epsabs, double epsrel, size_t limit,
                      gsl_integration_workspace * workspace,
                      double *result, double *abserr)
{
  int status;

  gsl_function f_transform;

  f_transform.function = &i_transform;
  f_transform.params = f;

  status = qags (&f_transform, 0.0, 1.0, 
                 epsabs, epsrel, limit,
                 workspace,
                 result, abserr,
                 &gsl_integration_qk15);

  return status;
}

static double 
i_transform (double t, void *params)
{
  gsl_function *f = (gsl_function *) params;
  double x = (1 - t) / t;
  double y = GSL_FN_EVAL (f, x) + GSL_FN_EVAL (f, -x);
  return (y / t) / t;
}


/* QAGIL: Evaluate an integral over an infinite range using the
   transformation,
   
   integrate(f(x),-Inf,b) = integrate(f(b-(1-t)/t)/t^2,0,1)

   */

struct il_params { double b ; gsl_function * f ; } ;

static double il_transform (double t, void *params);

int
gsl_integration_qagil (gsl_function * f,
                       double b,
                       double epsabs, double epsrel, size_t limit,
                       gsl_integration_workspace * workspace,
                       double *result, double *abserr)
{
  int status;

  gsl_function f_transform;
  struct il_params transform_params  ;

  transform_params.b = b ;
  transform_params.f = f ;

  f_transform.function = &il_transform;
  f_transform.params = &transform_params;

  status = qags (&f_transform, 0.0, 1.0, 
                 epsabs, epsrel, limit,
                 workspace,
                 result, abserr,
                 &gsl_integration_qk15);

  return status;
}

static double 
il_transform (double t, void *params)
{
  struct il_params *p = (struct il_params *) params;
  double b = p->b;
  gsl_function * f = p->f;
  double x = b - (1 - t) / t;
  double y = GSL_FN_EVAL (f, x);
  return (y / t) / t;
}

/* QAGIU: Evaluate an integral over an infinite range using the
   transformation

   integrate(f(x),a,Inf) = integrate(f(a+(1-t)/t)/t^2,0,1)

   */

struct iu_params { double a ; gsl_function * f ; } ;

static double iu_transform (double t, void *params);

int
gsl_integration_qagiu (gsl_function * f,
                       double a,
                       double epsabs, double epsrel, size_t limit,
                       gsl_integration_workspace * workspace,
                       double *result, double *abserr)
{
  int status;

  gsl_function f_transform;
  struct iu_params transform_params  ;

  transform_params.a = a ;
  transform_params.f = f ;

  f_transform.function = &iu_transform;
  f_transform.params = &transform_params;

  status = qags (&f_transform, 0.0, 1.0, 
                 epsabs, epsrel, limit,
                 workspace,
                 result, abserr,
                 &gsl_integration_qk15);

  return status;
}

static double 
iu_transform (double t, void *params)
{
  struct iu_params *p = (struct iu_params *) params;
  double a = p->a;
  gsl_function * f = p->f;
  double x = a + (1 - t) / t;
  double y = GSL_FN_EVAL (f, x);
  return (y / t) / t;
}

/* Main integration function */

static int
qags (const gsl_function * f,
      const double a, const double b,
      const double epsabs, const double epsrel,
      const size_t limit,
      gsl_integration_workspace * workspace,
      double *result, double *abserr,
      gsl_integration_rule * q)
{
  double area, errsum;
  double res_ext, err_ext;
  double result0, abserr0, resabs0, resasc0;
  double tolerance;

  double ertest = 0;
  double error_over_large_intervals = 0;
  double reseps = 0, abseps = 0, correc = 0;
  size_t ktmin = 0;
  int roundoff_type1 = 0, roundoff_type2 = 0, roundoff_type3 = 0;
  int error_type = 0, error_type2 = 0;

  size_t iteration = 0;

  int positive_integrand = 0;
  int extrapolate = 0;
  int disallow_extrapolation = 0;

  struct extrapolation_table table;

  /* Initialize results */

  initialise (workspace, a, b);

  *result = 0;
  *abserr = 0;

  if (limit > workspace->limit)
    {
      GSL_ERROR ("iteration limit exceeds available workspace", GSL_EINVAL) ;
    }

  /* Test on accuracy */

  if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28))
    {
      GSL_ERROR ("tolerance cannot be acheived with given epsabs and epsrel",
                 GSL_EBADTOL);
    }

  /* Perform the first integration */

  q (f, a, b, &result0, &abserr0, &resabs0, &resasc0);

  set_initial_result (workspace, result0, abserr0);

  tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (result0));

  if (abserr0 <= 100 * GSL_DBL_EPSILON * resabs0 && abserr0 > tolerance)
    {
      *result = result0;
      *abserr = abserr0;

      GSL_ERROR ("cannot reach tolerance because of roundoff error"
                 "on first attempt", GSL_EROUND);
    }
  else if ((abserr0 <= tolerance && abserr0 != resasc0) || abserr0 == 0.0)
    {
      *result = result0;
      *abserr = abserr0;

      return GSL_SUCCESS;
    }
  else if (limit == 1)
    {
      *result = result0;
      *abserr = abserr0;

      GSL_ERROR ("a maximum of one iteration was insufficient", GSL_EMAXITER);
    }

  /* Initialization */

  initialise_table (&table);
  append_table (&table, result0);

  area = result0;
  errsum = abserr0;

  res_ext = result0;
  err_ext = GSL_DBL_MAX;

  positive_integrand = test_positivity (result0, resabs0);

  iteration = 1;

  do
    {
      size_t current_level;
      double a1, b1, a2, b2;
      double a_i, b_i, r_i, e_i;
      double area1 = 0, area2 = 0, area12 = 0;
      double error1 = 0, error2 = 0, error12 = 0;
      double resasc1, resasc2;
      double resabs1, resabs2;
      double last_e_i;

      /* Bisect the subinterval with the largest error estimate */

      retrieve (workspace, &a_i, &b_i, &r_i, &e_i);

      current_level = workspace->level[workspace->i] + 1;

      a1 = a_i;
      b1 = 0.5 * (a_i + b_i);
      a2 = b1;
      b2 = b_i;

      iteration++;

      q (f, a1, b1, &area1, &error1, &resabs1, &resasc1);
      q (f, a2, b2, &area2, &error2, &resabs2, &resasc2);

      area12 = area1 + area2;
      error12 = error1 + error2;
      last_e_i = e_i;

      /* Improve previous approximations to the integral and test for
         accuracy.

         We write these expressions in the same way as the original
         QUADPACK code so that the rounding errors are the same, which
         makes testing easier. */

      errsum = errsum + error12 - e_i;
      area = area + area12 - r_i;

      tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (area));

      if (resasc1 != error1 && resasc2 != error2)
        {
          double delta = r_i - area12;

          if (fabs (delta) <= 1.0e-5 * fabs (area12) && error12 >= 0.99 * e_i)
            {
              if (!extrapolate)
                {
                  roundoff_type1++;
                }
              else
                {
                  roundoff_type2++;
                }
            }
          if (iteration > 10 && error12 > e_i)
            {
              roundoff_type3++;
            }
        }

      /* Test for roundoff and eventually set error flag */

      if (roundoff_type1 + roundoff_type2 >= 10 || roundoff_type3 >= 20)
        {
          error_type = 2;       /* round off error */
        }

      if (roundoff_type2 >= 5)
        {
          error_type2 = 1;
        }

      /* set error flag in the case of bad integrand behaviour at
         a point of the integration range */

      if (subinterval_too_small (a1, a2, b2))
        {
          error_type = 4;
        }

      /* append the newly-created intervals to the list */

      update (workspace, a1, b1, area1, error1, a2, b2, area2, error2);

      if (errsum <= tolerance)
        {
          goto compute_result;
        }

      if (error_type)
        {
          break;
        }

      if (iteration >= limit - 1)
        {
          error_type = 1;
          break;
        }

      if (iteration == 2)       /* set up variables on first iteration */
        {
          error_over_large_intervals = errsum;
          ertest = tolerance;
          append_table (&table, area);
          continue;
        }

      if (disallow_extrapolation)
        {
          continue;
        }

      error_over_large_intervals += -last_e_i;

      if (current_level < workspace->maximum_level)
        {
          error_over_large_intervals += error12;
        }

      if (!extrapolate)
        {
          /* test whether the interval to be bisected next is the
             smallest interval. */

          if (large_interval (workspace))
            continue;

          extrapolate = 1;
          workspace->nrmax = 1;
        }

      if (!error_type2 && error_over_large_intervals > ertest)
        {
          if (increase_nrmax (workspace))
            continue;
        }

      /* Perform extrapolation */

      append_table (&table, area);

      qelg (&table, &reseps, &abseps);

      ktmin++;

      if (ktmin > 5 && err_ext < 0.001 * errsum)
        {
          error_type = 5;
        }

      if (abseps < err_ext)
        {
          ktmin = 0;
          err_ext = abseps;
          res_ext = reseps;
          correc = error_over_large_intervals;
          ertest = GSL_MAX_DBL (epsabs, epsrel * fabs (reseps));
          if (err_ext <= ertest)
            break;
        }

      /* Prepare bisection of the smallest interval. */

      if (table.n == 1)
        {
          disallow_extrapolation = 1;
        }

      if (error_type == 5)
        {
          break;
        }

      /* work on interval with largest error */

      reset_nrmax (workspace);
      extrapolate = 0;
      error_over_large_intervals = errsum;

    }
  while (iteration < limit);

  *result = res_ext;
  *abserr = err_ext;

  if (err_ext == GSL_DBL_MAX)
    goto compute_result;

  if (error_type || error_type2)
    {
      if (error_type2)
        {
          err_ext += correc;
        }

//       if (error_type == 0)
//         error_type = 3;

      if (res_ext != 0.0 && area != 0.0)
        {
          if (err_ext / fabs (res_ext) > errsum / fabs (area))
            goto compute_result;
        }
      else if (err_ext > errsum)
        {
          goto compute_result;
        }
      else if (area == 0.0)
        {
          goto return_error;
        }
    }

  /*  Test on divergence. */

  {
    double max_area = GSL_MAX_DBL (fabs (res_ext), fabs (area));

    if (!positive_integrand && max_area < 0.01 * resabs0)
      goto return_error;
  }

  {
    double ratio = res_ext / area;

    if (ratio < 0.01 || ratio > 100.0 || errsum > fabs (area))
      error_type = 6;
  }

  goto return_error;

compute_result:

  *result = sum_results (workspace);
  *abserr = errsum;

return_error:

  if (error_type > 2)
    error_type--;



  if (error_type == 0) 
    {
      return GSL_SUCCESS;
    }
  else if (error_type == 1)
    {
      GSL_ERROR ("number of iterations was insufficient", GSL_EMAXITER);
    }
  else if (error_type == 2)
    {
      GSL_ERROR ("cannot reach tolerance because of roundoff error",
                 GSL_EROUND);
    }
  else if (error_type == 3)
    {
      GSL_ERROR ("bad integrand behavior found in the integration interval",
                 GSL_ESING);
    }
  else if (error_type == 4)
    {
      GSL_ERROR ("roundoff error detected in the extrapolation table",
                 GSL_EROUND);
    }
  else if (error_type == 5)
    {
      GSL_ERROR ("integral is divergent, or slowly convergent",
                 GSL_EDIVERGE);
    }

  GSL_ERROR ("could not integrate function", GSL_EFAILED);
}
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2
 RooAdaptiveGaussKronrodIntegrator1D.cxx:3
 RooAdaptiveGaussKronrodIntegrator1D.cxx:4
 RooAdaptiveGaussKronrodIntegrator1D.cxx:5
 RooAdaptiveGaussKronrodIntegrator1D.cxx:6
 RooAdaptiveGaussKronrodIntegrator1D.cxx:7
 RooAdaptiveGaussKronrodIntegrator1D.cxx:8
 RooAdaptiveGaussKronrodIntegrator1D.cxx:9
 RooAdaptiveGaussKronrodIntegrator1D.cxx:10
 RooAdaptiveGaussKronrodIntegrator1D.cxx:11
 RooAdaptiveGaussKronrodIntegrator1D.cxx:12
 RooAdaptiveGaussKronrodIntegrator1D.cxx:13
 RooAdaptiveGaussKronrodIntegrator1D.cxx:14
 RooAdaptiveGaussKronrodIntegrator1D.cxx:15
 RooAdaptiveGaussKronrodIntegrator1D.cxx:16
 RooAdaptiveGaussKronrodIntegrator1D.cxx:17
 RooAdaptiveGaussKronrodIntegrator1D.cxx:18
 RooAdaptiveGaussKronrodIntegrator1D.cxx:19
 RooAdaptiveGaussKronrodIntegrator1D.cxx:20
 RooAdaptiveGaussKronrodIntegrator1D.cxx:21
 RooAdaptiveGaussKronrodIntegrator1D.cxx:22
 RooAdaptiveGaussKronrodIntegrator1D.cxx:23
 RooAdaptiveGaussKronrodIntegrator1D.cxx:24
 RooAdaptiveGaussKronrodIntegrator1D.cxx:25
 RooAdaptiveGaussKronrodIntegrator1D.cxx:26
 RooAdaptiveGaussKronrodIntegrator1D.cxx:27
 RooAdaptiveGaussKronrodIntegrator1D.cxx:28
 RooAdaptiveGaussKronrodIntegrator1D.cxx:29
 RooAdaptiveGaussKronrodIntegrator1D.cxx:30
 RooAdaptiveGaussKronrodIntegrator1D.cxx:31
 RooAdaptiveGaussKronrodIntegrator1D.cxx:32
 RooAdaptiveGaussKronrodIntegrator1D.cxx:33
 RooAdaptiveGaussKronrodIntegrator1D.cxx:34
 RooAdaptiveGaussKronrodIntegrator1D.cxx:35
 RooAdaptiveGaussKronrodIntegrator1D.cxx:36
 RooAdaptiveGaussKronrodIntegrator1D.cxx:37
 RooAdaptiveGaussKronrodIntegrator1D.cxx:38
 RooAdaptiveGaussKronrodIntegrator1D.cxx:39
 RooAdaptiveGaussKronrodIntegrator1D.cxx:40
 RooAdaptiveGaussKronrodIntegrator1D.cxx:41
 RooAdaptiveGaussKronrodIntegrator1D.cxx:42
 RooAdaptiveGaussKronrodIntegrator1D.cxx:43
 RooAdaptiveGaussKronrodIntegrator1D.cxx:44
 RooAdaptiveGaussKronrodIntegrator1D.cxx:45
 RooAdaptiveGaussKronrodIntegrator1D.cxx:46
 RooAdaptiveGaussKronrodIntegrator1D.cxx:47
 RooAdaptiveGaussKronrodIntegrator1D.cxx:48
 RooAdaptiveGaussKronrodIntegrator1D.cxx:49
 RooAdaptiveGaussKronrodIntegrator1D.cxx:50
 RooAdaptiveGaussKronrodIntegrator1D.cxx:51
 RooAdaptiveGaussKronrodIntegrator1D.cxx:52
 RooAdaptiveGaussKronrodIntegrator1D.cxx:53
 RooAdaptiveGaussKronrodIntegrator1D.cxx:54
 RooAdaptiveGaussKronrodIntegrator1D.cxx:55
 RooAdaptiveGaussKronrodIntegrator1D.cxx:56
 RooAdaptiveGaussKronrodIntegrator1D.cxx:57
 RooAdaptiveGaussKronrodIntegrator1D.cxx:58
 RooAdaptiveGaussKronrodIntegrator1D.cxx:59
 RooAdaptiveGaussKronrodIntegrator1D.cxx:60
 RooAdaptiveGaussKronrodIntegrator1D.cxx:61
 RooAdaptiveGaussKronrodIntegrator1D.cxx:62
 RooAdaptiveGaussKronrodIntegrator1D.cxx:63
 RooAdaptiveGaussKronrodIntegrator1D.cxx:64
 RooAdaptiveGaussKronrodIntegrator1D.cxx:65
 RooAdaptiveGaussKronrodIntegrator1D.cxx:66
 RooAdaptiveGaussKronrodIntegrator1D.cxx:67
 RooAdaptiveGaussKronrodIntegrator1D.cxx:68
 RooAdaptiveGaussKronrodIntegrator1D.cxx:69
 RooAdaptiveGaussKronrodIntegrator1D.cxx:70
 RooAdaptiveGaussKronrodIntegrator1D.cxx:71
 RooAdaptiveGaussKronrodIntegrator1D.cxx:72
 RooAdaptiveGaussKronrodIntegrator1D.cxx:73
 RooAdaptiveGaussKronrodIntegrator1D.cxx:74
 RooAdaptiveGaussKronrodIntegrator1D.cxx:75
 RooAdaptiveGaussKronrodIntegrator1D.cxx:76
 RooAdaptiveGaussKronrodIntegrator1D.cxx:77
 RooAdaptiveGaussKronrodIntegrator1D.cxx:78
 RooAdaptiveGaussKronrodIntegrator1D.cxx:79
 RooAdaptiveGaussKronrodIntegrator1D.cxx:80
 RooAdaptiveGaussKronrodIntegrator1D.cxx:81
 RooAdaptiveGaussKronrodIntegrator1D.cxx:82
 RooAdaptiveGaussKronrodIntegrator1D.cxx:83
 RooAdaptiveGaussKronrodIntegrator1D.cxx:84
 RooAdaptiveGaussKronrodIntegrator1D.cxx:85
 RooAdaptiveGaussKronrodIntegrator1D.cxx:86
 RooAdaptiveGaussKronrodIntegrator1D.cxx:87
 RooAdaptiveGaussKronrodIntegrator1D.cxx:88
 RooAdaptiveGaussKronrodIntegrator1D.cxx:89
 RooAdaptiveGaussKronrodIntegrator1D.cxx:90
 RooAdaptiveGaussKronrodIntegrator1D.cxx:91
 RooAdaptiveGaussKronrodIntegrator1D.cxx:92
 RooAdaptiveGaussKronrodIntegrator1D.cxx:93
 RooAdaptiveGaussKronrodIntegrator1D.cxx:94
 RooAdaptiveGaussKronrodIntegrator1D.cxx:95
 RooAdaptiveGaussKronrodIntegrator1D.cxx:96
 RooAdaptiveGaussKronrodIntegrator1D.cxx:97
 RooAdaptiveGaussKronrodIntegrator1D.cxx:98
 RooAdaptiveGaussKronrodIntegrator1D.cxx:99
 RooAdaptiveGaussKronrodIntegrator1D.cxx:100
 RooAdaptiveGaussKronrodIntegrator1D.cxx:101
 RooAdaptiveGaussKronrodIntegrator1D.cxx:102
 RooAdaptiveGaussKronrodIntegrator1D.cxx:103
 RooAdaptiveGaussKronrodIntegrator1D.cxx:104
 RooAdaptiveGaussKronrodIntegrator1D.cxx:105
 RooAdaptiveGaussKronrodIntegrator1D.cxx:106
 RooAdaptiveGaussKronrodIntegrator1D.cxx:107
 RooAdaptiveGaussKronrodIntegrator1D.cxx:108
 RooAdaptiveGaussKronrodIntegrator1D.cxx:109
 RooAdaptiveGaussKronrodIntegrator1D.cxx:110
 RooAdaptiveGaussKronrodIntegrator1D.cxx:111
 RooAdaptiveGaussKronrodIntegrator1D.cxx:112
 RooAdaptiveGaussKronrodIntegrator1D.cxx:113
 RooAdaptiveGaussKronrodIntegrator1D.cxx:114
 RooAdaptiveGaussKronrodIntegrator1D.cxx:115
 RooAdaptiveGaussKronrodIntegrator1D.cxx:116
 RooAdaptiveGaussKronrodIntegrator1D.cxx:117
 RooAdaptiveGaussKronrodIntegrator1D.cxx:118
 RooAdaptiveGaussKronrodIntegrator1D.cxx:119
 RooAdaptiveGaussKronrodIntegrator1D.cxx:120
 RooAdaptiveGaussKronrodIntegrator1D.cxx:121
 RooAdaptiveGaussKronrodIntegrator1D.cxx:122
 RooAdaptiveGaussKronrodIntegrator1D.cxx:123
 RooAdaptiveGaussKronrodIntegrator1D.cxx:124
 RooAdaptiveGaussKronrodIntegrator1D.cxx:125
 RooAdaptiveGaussKronrodIntegrator1D.cxx:126
 RooAdaptiveGaussKronrodIntegrator1D.cxx:127
 RooAdaptiveGaussKronrodIntegrator1D.cxx:128
 RooAdaptiveGaussKronrodIntegrator1D.cxx:129
 RooAdaptiveGaussKronrodIntegrator1D.cxx:130
 RooAdaptiveGaussKronrodIntegrator1D.cxx:131
 RooAdaptiveGaussKronrodIntegrator1D.cxx:132
 RooAdaptiveGaussKronrodIntegrator1D.cxx:133
 RooAdaptiveGaussKronrodIntegrator1D.cxx:134
 RooAdaptiveGaussKronrodIntegrator1D.cxx:135
 RooAdaptiveGaussKronrodIntegrator1D.cxx:136
 RooAdaptiveGaussKronrodIntegrator1D.cxx:137
 RooAdaptiveGaussKronrodIntegrator1D.cxx:138
 RooAdaptiveGaussKronrodIntegrator1D.cxx:139
 RooAdaptiveGaussKronrodIntegrator1D.cxx:140
 RooAdaptiveGaussKronrodIntegrator1D.cxx:141
 RooAdaptiveGaussKronrodIntegrator1D.cxx:142
 RooAdaptiveGaussKronrodIntegrator1D.cxx:143
 RooAdaptiveGaussKronrodIntegrator1D.cxx:144
 RooAdaptiveGaussKronrodIntegrator1D.cxx:145
 RooAdaptiveGaussKronrodIntegrator1D.cxx:146
 RooAdaptiveGaussKronrodIntegrator1D.cxx:147
 RooAdaptiveGaussKronrodIntegrator1D.cxx:148
 RooAdaptiveGaussKronrodIntegrator1D.cxx:149
 RooAdaptiveGaussKronrodIntegrator1D.cxx:150
 RooAdaptiveGaussKronrodIntegrator1D.cxx:151
 RooAdaptiveGaussKronrodIntegrator1D.cxx:152
 RooAdaptiveGaussKronrodIntegrator1D.cxx:153
 RooAdaptiveGaussKronrodIntegrator1D.cxx:154
 RooAdaptiveGaussKronrodIntegrator1D.cxx:155
 RooAdaptiveGaussKronrodIntegrator1D.cxx:156
 RooAdaptiveGaussKronrodIntegrator1D.cxx:157
 RooAdaptiveGaussKronrodIntegrator1D.cxx:158
 RooAdaptiveGaussKronrodIntegrator1D.cxx:159
 RooAdaptiveGaussKronrodIntegrator1D.cxx:160
 RooAdaptiveGaussKronrodIntegrator1D.cxx:161
 RooAdaptiveGaussKronrodIntegrator1D.cxx:162
 RooAdaptiveGaussKronrodIntegrator1D.cxx:163
 RooAdaptiveGaussKronrodIntegrator1D.cxx:164
 RooAdaptiveGaussKronrodIntegrator1D.cxx:165
 RooAdaptiveGaussKronrodIntegrator1D.cxx:166
 RooAdaptiveGaussKronrodIntegrator1D.cxx:167
 RooAdaptiveGaussKronrodIntegrator1D.cxx:168
 RooAdaptiveGaussKronrodIntegrator1D.cxx:169
 RooAdaptiveGaussKronrodIntegrator1D.cxx:170
 RooAdaptiveGaussKronrodIntegrator1D.cxx:171
 RooAdaptiveGaussKronrodIntegrator1D.cxx:172
 RooAdaptiveGaussKronrodIntegrator1D.cxx:173
 RooAdaptiveGaussKronrodIntegrator1D.cxx:174
 RooAdaptiveGaussKronrodIntegrator1D.cxx:175
 RooAdaptiveGaussKronrodIntegrator1D.cxx:176
 RooAdaptiveGaussKronrodIntegrator1D.cxx:177
 RooAdaptiveGaussKronrodIntegrator1D.cxx:178
 RooAdaptiveGaussKronrodIntegrator1D.cxx:179
 RooAdaptiveGaussKronrodIntegrator1D.cxx:180
 RooAdaptiveGaussKronrodIntegrator1D.cxx:181
 RooAdaptiveGaussKronrodIntegrator1D.cxx:182
 RooAdaptiveGaussKronrodIntegrator1D.cxx:183
 RooAdaptiveGaussKronrodIntegrator1D.cxx:184
 RooAdaptiveGaussKronrodIntegrator1D.cxx:185
 RooAdaptiveGaussKronrodIntegrator1D.cxx:186
 RooAdaptiveGaussKronrodIntegrator1D.cxx:187
 RooAdaptiveGaussKronrodIntegrator1D.cxx:188
 RooAdaptiveGaussKronrodIntegrator1D.cxx:189
 RooAdaptiveGaussKronrodIntegrator1D.cxx:190
 RooAdaptiveGaussKronrodIntegrator1D.cxx:191
 RooAdaptiveGaussKronrodIntegrator1D.cxx:192
 RooAdaptiveGaussKronrodIntegrator1D.cxx:193
 RooAdaptiveGaussKronrodIntegrator1D.cxx:194
 RooAdaptiveGaussKronrodIntegrator1D.cxx:195
 RooAdaptiveGaussKronrodIntegrator1D.cxx:196
 RooAdaptiveGaussKronrodIntegrator1D.cxx:197
 RooAdaptiveGaussKronrodIntegrator1D.cxx:198
 RooAdaptiveGaussKronrodIntegrator1D.cxx:199
 RooAdaptiveGaussKronrodIntegrator1D.cxx:200
 RooAdaptiveGaussKronrodIntegrator1D.cxx:201
 RooAdaptiveGaussKronrodIntegrator1D.cxx:202
 RooAdaptiveGaussKronrodIntegrator1D.cxx:203
 RooAdaptiveGaussKronrodIntegrator1D.cxx:204
 RooAdaptiveGaussKronrodIntegrator1D.cxx:205
 RooAdaptiveGaussKronrodIntegrator1D.cxx:206
 RooAdaptiveGaussKronrodIntegrator1D.cxx:207
 RooAdaptiveGaussKronrodIntegrator1D.cxx:208
 RooAdaptiveGaussKronrodIntegrator1D.cxx:209
 RooAdaptiveGaussKronrodIntegrator1D.cxx:210
 RooAdaptiveGaussKronrodIntegrator1D.cxx:211
 RooAdaptiveGaussKronrodIntegrator1D.cxx:212
 RooAdaptiveGaussKronrodIntegrator1D.cxx:213
 RooAdaptiveGaussKronrodIntegrator1D.cxx:214
 RooAdaptiveGaussKronrodIntegrator1D.cxx:215
 RooAdaptiveGaussKronrodIntegrator1D.cxx:216
 RooAdaptiveGaussKronrodIntegrator1D.cxx:217
 RooAdaptiveGaussKronrodIntegrator1D.cxx:218
 RooAdaptiveGaussKronrodIntegrator1D.cxx:219
 RooAdaptiveGaussKronrodIntegrator1D.cxx:220
 RooAdaptiveGaussKronrodIntegrator1D.cxx:221
 RooAdaptiveGaussKronrodIntegrator1D.cxx:222
 RooAdaptiveGaussKronrodIntegrator1D.cxx:223
 RooAdaptiveGaussKronrodIntegrator1D.cxx:224
 RooAdaptiveGaussKronrodIntegrator1D.cxx:225
 RooAdaptiveGaussKronrodIntegrator1D.cxx:226
 RooAdaptiveGaussKronrodIntegrator1D.cxx:227
 RooAdaptiveGaussKronrodIntegrator1D.cxx:228
 RooAdaptiveGaussKronrodIntegrator1D.cxx:229
 RooAdaptiveGaussKronrodIntegrator1D.cxx:230
 RooAdaptiveGaussKronrodIntegrator1D.cxx:231
 RooAdaptiveGaussKronrodIntegrator1D.cxx:232
 RooAdaptiveGaussKronrodIntegrator1D.cxx:233
 RooAdaptiveGaussKronrodIntegrator1D.cxx:234
 RooAdaptiveGaussKronrodIntegrator1D.cxx:235
 RooAdaptiveGaussKronrodIntegrator1D.cxx:236
 RooAdaptiveGaussKronrodIntegrator1D.cxx:237
 RooAdaptiveGaussKronrodIntegrator1D.cxx:238
 RooAdaptiveGaussKronrodIntegrator1D.cxx:239
 RooAdaptiveGaussKronrodIntegrator1D.cxx:240
 RooAdaptiveGaussKronrodIntegrator1D.cxx:241
 RooAdaptiveGaussKronrodIntegrator1D.cxx:242
 RooAdaptiveGaussKronrodIntegrator1D.cxx:243
 RooAdaptiveGaussKronrodIntegrator1D.cxx:244
 RooAdaptiveGaussKronrodIntegrator1D.cxx:245
 RooAdaptiveGaussKronrodIntegrator1D.cxx:246
 RooAdaptiveGaussKronrodIntegrator1D.cxx:247
 RooAdaptiveGaussKronrodIntegrator1D.cxx:248
 RooAdaptiveGaussKronrodIntegrator1D.cxx:249
 RooAdaptiveGaussKronrodIntegrator1D.cxx:250
 RooAdaptiveGaussKronrodIntegrator1D.cxx:251
 RooAdaptiveGaussKronrodIntegrator1D.cxx:252
 RooAdaptiveGaussKronrodIntegrator1D.cxx:253
 RooAdaptiveGaussKronrodIntegrator1D.cxx:254
 RooAdaptiveGaussKronrodIntegrator1D.cxx:255
 RooAdaptiveGaussKronrodIntegrator1D.cxx:256
 RooAdaptiveGaussKronrodIntegrator1D.cxx:257
 RooAdaptiveGaussKronrodIntegrator1D.cxx:258
 RooAdaptiveGaussKronrodIntegrator1D.cxx:259
 RooAdaptiveGaussKronrodIntegrator1D.cxx:260
 RooAdaptiveGaussKronrodIntegrator1D.cxx:261
 RooAdaptiveGaussKronrodIntegrator1D.cxx:262
 RooAdaptiveGaussKronrodIntegrator1D.cxx:263
 RooAdaptiveGaussKronrodIntegrator1D.cxx:264
 RooAdaptiveGaussKronrodIntegrator1D.cxx:265
 RooAdaptiveGaussKronrodIntegrator1D.cxx:266
 RooAdaptiveGaussKronrodIntegrator1D.cxx:267
 RooAdaptiveGaussKronrodIntegrator1D.cxx:268
 RooAdaptiveGaussKronrodIntegrator1D.cxx:269
 RooAdaptiveGaussKronrodIntegrator1D.cxx:270
 RooAdaptiveGaussKronrodIntegrator1D.cxx:271
 RooAdaptiveGaussKronrodIntegrator1D.cxx:272
 RooAdaptiveGaussKronrodIntegrator1D.cxx:273
 RooAdaptiveGaussKronrodIntegrator1D.cxx:274
 RooAdaptiveGaussKronrodIntegrator1D.cxx:275
 RooAdaptiveGaussKronrodIntegrator1D.cxx:276
 RooAdaptiveGaussKronrodIntegrator1D.cxx:277
 RooAdaptiveGaussKronrodIntegrator1D.cxx:278
 RooAdaptiveGaussKronrodIntegrator1D.cxx:279
 RooAdaptiveGaussKronrodIntegrator1D.cxx:280
 RooAdaptiveGaussKronrodIntegrator1D.cxx:281
 RooAdaptiveGaussKronrodIntegrator1D.cxx:282
 RooAdaptiveGaussKronrodIntegrator1D.cxx:283
 RooAdaptiveGaussKronrodIntegrator1D.cxx:284
 RooAdaptiveGaussKronrodIntegrator1D.cxx:285
 RooAdaptiveGaussKronrodIntegrator1D.cxx:286
 RooAdaptiveGaussKronrodIntegrator1D.cxx:287
 RooAdaptiveGaussKronrodIntegrator1D.cxx:288
 RooAdaptiveGaussKronrodIntegrator1D.cxx:289
 RooAdaptiveGaussKronrodIntegrator1D.cxx:290
 RooAdaptiveGaussKronrodIntegrator1D.cxx:291
 RooAdaptiveGaussKronrodIntegrator1D.cxx:292
 RooAdaptiveGaussKronrodIntegrator1D.cxx:293
 RooAdaptiveGaussKronrodIntegrator1D.cxx:294
 RooAdaptiveGaussKronrodIntegrator1D.cxx:295
 RooAdaptiveGaussKronrodIntegrator1D.cxx:296
 RooAdaptiveGaussKronrodIntegrator1D.cxx:297
 RooAdaptiveGaussKronrodIntegrator1D.cxx:298
 RooAdaptiveGaussKronrodIntegrator1D.cxx:299
 RooAdaptiveGaussKronrodIntegrator1D.cxx:300
 RooAdaptiveGaussKronrodIntegrator1D.cxx:301
 RooAdaptiveGaussKronrodIntegrator1D.cxx:302
 RooAdaptiveGaussKronrodIntegrator1D.cxx:303
 RooAdaptiveGaussKronrodIntegrator1D.cxx:304
 RooAdaptiveGaussKronrodIntegrator1D.cxx:305
 RooAdaptiveGaussKronrodIntegrator1D.cxx:306
 RooAdaptiveGaussKronrodIntegrator1D.cxx:307
 RooAdaptiveGaussKronrodIntegrator1D.cxx:308
 RooAdaptiveGaussKronrodIntegrator1D.cxx:309
 RooAdaptiveGaussKronrodIntegrator1D.cxx:310
 RooAdaptiveGaussKronrodIntegrator1D.cxx:311
 RooAdaptiveGaussKronrodIntegrator1D.cxx:312
 RooAdaptiveGaussKronrodIntegrator1D.cxx:313
 RooAdaptiveGaussKronrodIntegrator1D.cxx:314
 RooAdaptiveGaussKronrodIntegrator1D.cxx:315
 RooAdaptiveGaussKronrodIntegrator1D.cxx:316
 RooAdaptiveGaussKronrodIntegrator1D.cxx:317
 RooAdaptiveGaussKronrodIntegrator1D.cxx:318
 RooAdaptiveGaussKronrodIntegrator1D.cxx:319
 RooAdaptiveGaussKronrodIntegrator1D.cxx:320
 RooAdaptiveGaussKronrodIntegrator1D.cxx:321
 RooAdaptiveGaussKronrodIntegrator1D.cxx:322
 RooAdaptiveGaussKronrodIntegrator1D.cxx:323
 RooAdaptiveGaussKronrodIntegrator1D.cxx:324
 RooAdaptiveGaussKronrodIntegrator1D.cxx:325
 RooAdaptiveGaussKronrodIntegrator1D.cxx:326
 RooAdaptiveGaussKronrodIntegrator1D.cxx:327
 RooAdaptiveGaussKronrodIntegrator1D.cxx:328
 RooAdaptiveGaussKronrodIntegrator1D.cxx:329
 RooAdaptiveGaussKronrodIntegrator1D.cxx:330
 RooAdaptiveGaussKronrodIntegrator1D.cxx:331
 RooAdaptiveGaussKronrodIntegrator1D.cxx:332
 RooAdaptiveGaussKronrodIntegrator1D.cxx:333
 RooAdaptiveGaussKronrodIntegrator1D.cxx:334
 RooAdaptiveGaussKronrodIntegrator1D.cxx:335
 RooAdaptiveGaussKronrodIntegrator1D.cxx:336
 RooAdaptiveGaussKronrodIntegrator1D.cxx:337
 RooAdaptiveGaussKronrodIntegrator1D.cxx:338
 RooAdaptiveGaussKronrodIntegrator1D.cxx:339
 RooAdaptiveGaussKronrodIntegrator1D.cxx:340
 RooAdaptiveGaussKronrodIntegrator1D.cxx:341
 RooAdaptiveGaussKronrodIntegrator1D.cxx:342
 RooAdaptiveGaussKronrodIntegrator1D.cxx:343
 RooAdaptiveGaussKronrodIntegrator1D.cxx:344
 RooAdaptiveGaussKronrodIntegrator1D.cxx:345
 RooAdaptiveGaussKronrodIntegrator1D.cxx:346
 RooAdaptiveGaussKronrodIntegrator1D.cxx:347
 RooAdaptiveGaussKronrodIntegrator1D.cxx:348
 RooAdaptiveGaussKronrodIntegrator1D.cxx:349
 RooAdaptiveGaussKronrodIntegrator1D.cxx:350
 RooAdaptiveGaussKronrodIntegrator1D.cxx:351
 RooAdaptiveGaussKronrodIntegrator1D.cxx:352
 RooAdaptiveGaussKronrodIntegrator1D.cxx:353
 RooAdaptiveGaussKronrodIntegrator1D.cxx:354
 RooAdaptiveGaussKronrodIntegrator1D.cxx:355
 RooAdaptiveGaussKronrodIntegrator1D.cxx:356
 RooAdaptiveGaussKronrodIntegrator1D.cxx:357
 RooAdaptiveGaussKronrodIntegrator1D.cxx:358
 RooAdaptiveGaussKronrodIntegrator1D.cxx:359
 RooAdaptiveGaussKronrodIntegrator1D.cxx:360
 RooAdaptiveGaussKronrodIntegrator1D.cxx:361
 RooAdaptiveGaussKronrodIntegrator1D.cxx:362
 RooAdaptiveGaussKronrodIntegrator1D.cxx:363
 RooAdaptiveGaussKronrodIntegrator1D.cxx:364
 RooAdaptiveGaussKronrodIntegrator1D.cxx:365
 RooAdaptiveGaussKronrodIntegrator1D.cxx:366
 RooAdaptiveGaussKronrodIntegrator1D.cxx:367
 RooAdaptiveGaussKronrodIntegrator1D.cxx:368
 RooAdaptiveGaussKronrodIntegrator1D.cxx:369
 RooAdaptiveGaussKronrodIntegrator1D.cxx:370
 RooAdaptiveGaussKronrodIntegrator1D.cxx:371
 RooAdaptiveGaussKronrodIntegrator1D.cxx:372
 RooAdaptiveGaussKronrodIntegrator1D.cxx:373
 RooAdaptiveGaussKronrodIntegrator1D.cxx:374
 RooAdaptiveGaussKronrodIntegrator1D.cxx:375
 RooAdaptiveGaussKronrodIntegrator1D.cxx:376
 RooAdaptiveGaussKronrodIntegrator1D.cxx:377
 RooAdaptiveGaussKronrodIntegrator1D.cxx:378
 RooAdaptiveGaussKronrodIntegrator1D.cxx:379
 RooAdaptiveGaussKronrodIntegrator1D.cxx:380
 RooAdaptiveGaussKronrodIntegrator1D.cxx:381
 RooAdaptiveGaussKronrodIntegrator1D.cxx:382
 RooAdaptiveGaussKronrodIntegrator1D.cxx:383
 RooAdaptiveGaussKronrodIntegrator1D.cxx:384
 RooAdaptiveGaussKronrodIntegrator1D.cxx:385
 RooAdaptiveGaussKronrodIntegrator1D.cxx:386
 RooAdaptiveGaussKronrodIntegrator1D.cxx:387
 RooAdaptiveGaussKronrodIntegrator1D.cxx:388
 RooAdaptiveGaussKronrodIntegrator1D.cxx:389
 RooAdaptiveGaussKronrodIntegrator1D.cxx:390
 RooAdaptiveGaussKronrodIntegrator1D.cxx:391
 RooAdaptiveGaussKronrodIntegrator1D.cxx:392
 RooAdaptiveGaussKronrodIntegrator1D.cxx:393
 RooAdaptiveGaussKronrodIntegrator1D.cxx:394
 RooAdaptiveGaussKronrodIntegrator1D.cxx:395
 RooAdaptiveGaussKronrodIntegrator1D.cxx:396
 RooAdaptiveGaussKronrodIntegrator1D.cxx:397
 RooAdaptiveGaussKronrodIntegrator1D.cxx:398
 RooAdaptiveGaussKronrodIntegrator1D.cxx:399
 RooAdaptiveGaussKronrodIntegrator1D.cxx:400
 RooAdaptiveGaussKronrodIntegrator1D.cxx:401
 RooAdaptiveGaussKronrodIntegrator1D.cxx:402
 RooAdaptiveGaussKronrodIntegrator1D.cxx:403
 RooAdaptiveGaussKronrodIntegrator1D.cxx:404
 RooAdaptiveGaussKronrodIntegrator1D.cxx:405
 RooAdaptiveGaussKronrodIntegrator1D.cxx:406
 RooAdaptiveGaussKronrodIntegrator1D.cxx:407
 RooAdaptiveGaussKronrodIntegrator1D.cxx:408
 RooAdaptiveGaussKronrodIntegrator1D.cxx:409
 RooAdaptiveGaussKronrodIntegrator1D.cxx:410
 RooAdaptiveGaussKronrodIntegrator1D.cxx:411
 RooAdaptiveGaussKronrodIntegrator1D.cxx:412
 RooAdaptiveGaussKronrodIntegrator1D.cxx:413
 RooAdaptiveGaussKronrodIntegrator1D.cxx:414
 RooAdaptiveGaussKronrodIntegrator1D.cxx:415
 RooAdaptiveGaussKronrodIntegrator1D.cxx:416
 RooAdaptiveGaussKronrodIntegrator1D.cxx:417
 RooAdaptiveGaussKronrodIntegrator1D.cxx:418
 RooAdaptiveGaussKronrodIntegrator1D.cxx:419
 RooAdaptiveGaussKronrodIntegrator1D.cxx:420
 RooAdaptiveGaussKronrodIntegrator1D.cxx:421
 RooAdaptiveGaussKronrodIntegrator1D.cxx:422
 RooAdaptiveGaussKronrodIntegrator1D.cxx:423
 RooAdaptiveGaussKronrodIntegrator1D.cxx:424
 RooAdaptiveGaussKronrodIntegrator1D.cxx:425
 RooAdaptiveGaussKronrodIntegrator1D.cxx:426
 RooAdaptiveGaussKronrodIntegrator1D.cxx:427
 RooAdaptiveGaussKronrodIntegrator1D.cxx:428
 RooAdaptiveGaussKronrodIntegrator1D.cxx:429
 RooAdaptiveGaussKronrodIntegrator1D.cxx:430
 RooAdaptiveGaussKronrodIntegrator1D.cxx:431
 RooAdaptiveGaussKronrodIntegrator1D.cxx:432
 RooAdaptiveGaussKronrodIntegrator1D.cxx:433
 RooAdaptiveGaussKronrodIntegrator1D.cxx:434
 RooAdaptiveGaussKronrodIntegrator1D.cxx:435
 RooAdaptiveGaussKronrodIntegrator1D.cxx:436
 RooAdaptiveGaussKronrodIntegrator1D.cxx:437
 RooAdaptiveGaussKronrodIntegrator1D.cxx:438
 RooAdaptiveGaussKronrodIntegrator1D.cxx:439
 RooAdaptiveGaussKronrodIntegrator1D.cxx:440
 RooAdaptiveGaussKronrodIntegrator1D.cxx:441
 RooAdaptiveGaussKronrodIntegrator1D.cxx:442
 RooAdaptiveGaussKronrodIntegrator1D.cxx:443
 RooAdaptiveGaussKronrodIntegrator1D.cxx:444
 RooAdaptiveGaussKronrodIntegrator1D.cxx:445
 RooAdaptiveGaussKronrodIntegrator1D.cxx:446
 RooAdaptiveGaussKronrodIntegrator1D.cxx:447
 RooAdaptiveGaussKronrodIntegrator1D.cxx:448
 RooAdaptiveGaussKronrodIntegrator1D.cxx:449
 RooAdaptiveGaussKronrodIntegrator1D.cxx:450
 RooAdaptiveGaussKronrodIntegrator1D.cxx:451
 RooAdaptiveGaussKronrodIntegrator1D.cxx:452
 RooAdaptiveGaussKronrodIntegrator1D.cxx:453
 RooAdaptiveGaussKronrodIntegrator1D.cxx:454
 RooAdaptiveGaussKronrodIntegrator1D.cxx:455
 RooAdaptiveGaussKronrodIntegrator1D.cxx:456
 RooAdaptiveGaussKronrodIntegrator1D.cxx:457
 RooAdaptiveGaussKronrodIntegrator1D.cxx:458
 RooAdaptiveGaussKronrodIntegrator1D.cxx:459
 RooAdaptiveGaussKronrodIntegrator1D.cxx:460
 RooAdaptiveGaussKronrodIntegrator1D.cxx:461
 RooAdaptiveGaussKronrodIntegrator1D.cxx:462
 RooAdaptiveGaussKronrodIntegrator1D.cxx:463
 RooAdaptiveGaussKronrodIntegrator1D.cxx:464
 RooAdaptiveGaussKronrodIntegrator1D.cxx:465
 RooAdaptiveGaussKronrodIntegrator1D.cxx:466
 RooAdaptiveGaussKronrodIntegrator1D.cxx:467
 RooAdaptiveGaussKronrodIntegrator1D.cxx:468
 RooAdaptiveGaussKronrodIntegrator1D.cxx:469
 RooAdaptiveGaussKronrodIntegrator1D.cxx:470
 RooAdaptiveGaussKronrodIntegrator1D.cxx:471
 RooAdaptiveGaussKronrodIntegrator1D.cxx:472
 RooAdaptiveGaussKronrodIntegrator1D.cxx:473
 RooAdaptiveGaussKronrodIntegrator1D.cxx:474
 RooAdaptiveGaussKronrodIntegrator1D.cxx:475
 RooAdaptiveGaussKronrodIntegrator1D.cxx:476
 RooAdaptiveGaussKronrodIntegrator1D.cxx:477
 RooAdaptiveGaussKronrodIntegrator1D.cxx:478
 RooAdaptiveGaussKronrodIntegrator1D.cxx:479
 RooAdaptiveGaussKronrodIntegrator1D.cxx:480
 RooAdaptiveGaussKronrodIntegrator1D.cxx:481
 RooAdaptiveGaussKronrodIntegrator1D.cxx:482
 RooAdaptiveGaussKronrodIntegrator1D.cxx:483
 RooAdaptiveGaussKronrodIntegrator1D.cxx:484
 RooAdaptiveGaussKronrodIntegrator1D.cxx:485
 RooAdaptiveGaussKronrodIntegrator1D.cxx:486
 RooAdaptiveGaussKronrodIntegrator1D.cxx:487
 RooAdaptiveGaussKronrodIntegrator1D.cxx:488
 RooAdaptiveGaussKronrodIntegrator1D.cxx:489
 RooAdaptiveGaussKronrodIntegrator1D.cxx:490
 RooAdaptiveGaussKronrodIntegrator1D.cxx:491
 RooAdaptiveGaussKronrodIntegrator1D.cxx:492
 RooAdaptiveGaussKronrodIntegrator1D.cxx:493
 RooAdaptiveGaussKronrodIntegrator1D.cxx:494
 RooAdaptiveGaussKronrodIntegrator1D.cxx:495
 RooAdaptiveGaussKronrodIntegrator1D.cxx:496
 RooAdaptiveGaussKronrodIntegrator1D.cxx:497
 RooAdaptiveGaussKronrodIntegrator1D.cxx:498
 RooAdaptiveGaussKronrodIntegrator1D.cxx:499
 RooAdaptiveGaussKronrodIntegrator1D.cxx:500
 RooAdaptiveGaussKronrodIntegrator1D.cxx:501
 RooAdaptiveGaussKronrodIntegrator1D.cxx:502
 RooAdaptiveGaussKronrodIntegrator1D.cxx:503
 RooAdaptiveGaussKronrodIntegrator1D.cxx:504
 RooAdaptiveGaussKronrodIntegrator1D.cxx:505
 RooAdaptiveGaussKronrodIntegrator1D.cxx:506
 RooAdaptiveGaussKronrodIntegrator1D.cxx:507
 RooAdaptiveGaussKronrodIntegrator1D.cxx:508
 RooAdaptiveGaussKronrodIntegrator1D.cxx:509
 RooAdaptiveGaussKronrodIntegrator1D.cxx:510
 RooAdaptiveGaussKronrodIntegrator1D.cxx:511
 RooAdaptiveGaussKronrodIntegrator1D.cxx:512
 RooAdaptiveGaussKronrodIntegrator1D.cxx:513
 RooAdaptiveGaussKronrodIntegrator1D.cxx:514
 RooAdaptiveGaussKronrodIntegrator1D.cxx:515
 RooAdaptiveGaussKronrodIntegrator1D.cxx:516
 RooAdaptiveGaussKronrodIntegrator1D.cxx:517
 RooAdaptiveGaussKronrodIntegrator1D.cxx:518
 RooAdaptiveGaussKronrodIntegrator1D.cxx:519
 RooAdaptiveGaussKronrodIntegrator1D.cxx:520
 RooAdaptiveGaussKronrodIntegrator1D.cxx:521
 RooAdaptiveGaussKronrodIntegrator1D.cxx:522
 RooAdaptiveGaussKronrodIntegrator1D.cxx:523
 RooAdaptiveGaussKronrodIntegrator1D.cxx:524
 RooAdaptiveGaussKronrodIntegrator1D.cxx:525
 RooAdaptiveGaussKronrodIntegrator1D.cxx:526
 RooAdaptiveGaussKronrodIntegrator1D.cxx:527
 RooAdaptiveGaussKronrodIntegrator1D.cxx:528
 RooAdaptiveGaussKronrodIntegrator1D.cxx:529
 RooAdaptiveGaussKronrodIntegrator1D.cxx:530
 RooAdaptiveGaussKronrodIntegrator1D.cxx:531
 RooAdaptiveGaussKronrodIntegrator1D.cxx:532
 RooAdaptiveGaussKronrodIntegrator1D.cxx:533
 RooAdaptiveGaussKronrodIntegrator1D.cxx:534
 RooAdaptiveGaussKronrodIntegrator1D.cxx:535
 RooAdaptiveGaussKronrodIntegrator1D.cxx:536
 RooAdaptiveGaussKronrodIntegrator1D.cxx:537
 RooAdaptiveGaussKronrodIntegrator1D.cxx:538
 RooAdaptiveGaussKronrodIntegrator1D.cxx:539
 RooAdaptiveGaussKronrodIntegrator1D.cxx:540
 RooAdaptiveGaussKronrodIntegrator1D.cxx:541
 RooAdaptiveGaussKronrodIntegrator1D.cxx:542
 RooAdaptiveGaussKronrodIntegrator1D.cxx:543
 RooAdaptiveGaussKronrodIntegrator1D.cxx:544
 RooAdaptiveGaussKronrodIntegrator1D.cxx:545
 RooAdaptiveGaussKronrodIntegrator1D.cxx:546
 RooAdaptiveGaussKronrodIntegrator1D.cxx:547
 RooAdaptiveGaussKronrodIntegrator1D.cxx:548
 RooAdaptiveGaussKronrodIntegrator1D.cxx:549
 RooAdaptiveGaussKronrodIntegrator1D.cxx:550
 RooAdaptiveGaussKronrodIntegrator1D.cxx:551
 RooAdaptiveGaussKronrodIntegrator1D.cxx:552
 RooAdaptiveGaussKronrodIntegrator1D.cxx:553
 RooAdaptiveGaussKronrodIntegrator1D.cxx:554
 RooAdaptiveGaussKronrodIntegrator1D.cxx:555
 RooAdaptiveGaussKronrodIntegrator1D.cxx:556
 RooAdaptiveGaussKronrodIntegrator1D.cxx:557
 RooAdaptiveGaussKronrodIntegrator1D.cxx:558
 RooAdaptiveGaussKronrodIntegrator1D.cxx:559
 RooAdaptiveGaussKronrodIntegrator1D.cxx:560
 RooAdaptiveGaussKronrodIntegrator1D.cxx:561
 RooAdaptiveGaussKronrodIntegrator1D.cxx:562
 RooAdaptiveGaussKronrodIntegrator1D.cxx:563
 RooAdaptiveGaussKronrodIntegrator1D.cxx:564
 RooAdaptiveGaussKronrodIntegrator1D.cxx:565
 RooAdaptiveGaussKronrodIntegrator1D.cxx:566
 RooAdaptiveGaussKronrodIntegrator1D.cxx:567
 RooAdaptiveGaussKronrodIntegrator1D.cxx:568
 RooAdaptiveGaussKronrodIntegrator1D.cxx:569
 RooAdaptiveGaussKronrodIntegrator1D.cxx:570
 RooAdaptiveGaussKronrodIntegrator1D.cxx:571
 RooAdaptiveGaussKronrodIntegrator1D.cxx:572
 RooAdaptiveGaussKronrodIntegrator1D.cxx:573
 RooAdaptiveGaussKronrodIntegrator1D.cxx:574
 RooAdaptiveGaussKronrodIntegrator1D.cxx:575
 RooAdaptiveGaussKronrodIntegrator1D.cxx:576
 RooAdaptiveGaussKronrodIntegrator1D.cxx:577
 RooAdaptiveGaussKronrodIntegrator1D.cxx:578
 RooAdaptiveGaussKronrodIntegrator1D.cxx:579
 RooAdaptiveGaussKronrodIntegrator1D.cxx:580
 RooAdaptiveGaussKronrodIntegrator1D.cxx:581
 RooAdaptiveGaussKronrodIntegrator1D.cxx:582
 RooAdaptiveGaussKronrodIntegrator1D.cxx:583
 RooAdaptiveGaussKronrodIntegrator1D.cxx:584
 RooAdaptiveGaussKronrodIntegrator1D.cxx:585
 RooAdaptiveGaussKronrodIntegrator1D.cxx:586
 RooAdaptiveGaussKronrodIntegrator1D.cxx:587
 RooAdaptiveGaussKronrodIntegrator1D.cxx:588
 RooAdaptiveGaussKronrodIntegrator1D.cxx:589
 RooAdaptiveGaussKronrodIntegrator1D.cxx:590
 RooAdaptiveGaussKronrodIntegrator1D.cxx:591
 RooAdaptiveGaussKronrodIntegrator1D.cxx:592
 RooAdaptiveGaussKronrodIntegrator1D.cxx:593
 RooAdaptiveGaussKronrodIntegrator1D.cxx:594
 RooAdaptiveGaussKronrodIntegrator1D.cxx:595
 RooAdaptiveGaussKronrodIntegrator1D.cxx:596
 RooAdaptiveGaussKronrodIntegrator1D.cxx:597
 RooAdaptiveGaussKronrodIntegrator1D.cxx:598
 RooAdaptiveGaussKronrodIntegrator1D.cxx:599
 RooAdaptiveGaussKronrodIntegrator1D.cxx:600
 RooAdaptiveGaussKronrodIntegrator1D.cxx:601
 RooAdaptiveGaussKronrodIntegrator1D.cxx:602
 RooAdaptiveGaussKronrodIntegrator1D.cxx:603
 RooAdaptiveGaussKronrodIntegrator1D.cxx:604
 RooAdaptiveGaussKronrodIntegrator1D.cxx:605
 RooAdaptiveGaussKronrodIntegrator1D.cxx:606
 RooAdaptiveGaussKronrodIntegrator1D.cxx:607
 RooAdaptiveGaussKronrodIntegrator1D.cxx:608
 RooAdaptiveGaussKronrodIntegrator1D.cxx:609
 RooAdaptiveGaussKronrodIntegrator1D.cxx:610
 RooAdaptiveGaussKronrodIntegrator1D.cxx:611
 RooAdaptiveGaussKronrodIntegrator1D.cxx:612
 RooAdaptiveGaussKronrodIntegrator1D.cxx:613
 RooAdaptiveGaussKronrodIntegrator1D.cxx:614
 RooAdaptiveGaussKronrodIntegrator1D.cxx:615
 RooAdaptiveGaussKronrodIntegrator1D.cxx:616
 RooAdaptiveGaussKronrodIntegrator1D.cxx:617
 RooAdaptiveGaussKronrodIntegrator1D.cxx:618
 RooAdaptiveGaussKronrodIntegrator1D.cxx:619
 RooAdaptiveGaussKronrodIntegrator1D.cxx:620
 RooAdaptiveGaussKronrodIntegrator1D.cxx:621
 RooAdaptiveGaussKronrodIntegrator1D.cxx:622
 RooAdaptiveGaussKronrodIntegrator1D.cxx:623
 RooAdaptiveGaussKronrodIntegrator1D.cxx:624
 RooAdaptiveGaussKronrodIntegrator1D.cxx:625
 RooAdaptiveGaussKronrodIntegrator1D.cxx:626
 RooAdaptiveGaussKronrodIntegrator1D.cxx:627
 RooAdaptiveGaussKronrodIntegrator1D.cxx:628
 RooAdaptiveGaussKronrodIntegrator1D.cxx:629
 RooAdaptiveGaussKronrodIntegrator1D.cxx:630
 RooAdaptiveGaussKronrodIntegrator1D.cxx:631
 RooAdaptiveGaussKronrodIntegrator1D.cxx:632
 RooAdaptiveGaussKronrodIntegrator1D.cxx:633
 RooAdaptiveGaussKronrodIntegrator1D.cxx:634
 RooAdaptiveGaussKronrodIntegrator1D.cxx:635
 RooAdaptiveGaussKronrodIntegrator1D.cxx:636
 RooAdaptiveGaussKronrodIntegrator1D.cxx:637
 RooAdaptiveGaussKronrodIntegrator1D.cxx:638
 RooAdaptiveGaussKronrodIntegrator1D.cxx:639
 RooAdaptiveGaussKronrodIntegrator1D.cxx:640
 RooAdaptiveGaussKronrodIntegrator1D.cxx:641
 RooAdaptiveGaussKronrodIntegrator1D.cxx:642
 RooAdaptiveGaussKronrodIntegrator1D.cxx:643
 RooAdaptiveGaussKronrodIntegrator1D.cxx:644
 RooAdaptiveGaussKronrodIntegrator1D.cxx:645
 RooAdaptiveGaussKronrodIntegrator1D.cxx:646
 RooAdaptiveGaussKronrodIntegrator1D.cxx:647
 RooAdaptiveGaussKronrodIntegrator1D.cxx:648
 RooAdaptiveGaussKronrodIntegrator1D.cxx:649
 RooAdaptiveGaussKronrodIntegrator1D.cxx:650
 RooAdaptiveGaussKronrodIntegrator1D.cxx:651
 RooAdaptiveGaussKronrodIntegrator1D.cxx:652
 RooAdaptiveGaussKronrodIntegrator1D.cxx:653
 RooAdaptiveGaussKronrodIntegrator1D.cxx:654
 RooAdaptiveGaussKronrodIntegrator1D.cxx:655
 RooAdaptiveGaussKronrodIntegrator1D.cxx:656
 RooAdaptiveGaussKronrodIntegrator1D.cxx:657
 RooAdaptiveGaussKronrodIntegrator1D.cxx:658
 RooAdaptiveGaussKronrodIntegrator1D.cxx:659
 RooAdaptiveGaussKronrodIntegrator1D.cxx:660
 RooAdaptiveGaussKronrodIntegrator1D.cxx:661
 RooAdaptiveGaussKronrodIntegrator1D.cxx:662
 RooAdaptiveGaussKronrodIntegrator1D.cxx:663
 RooAdaptiveGaussKronrodIntegrator1D.cxx:664
 RooAdaptiveGaussKronrodIntegrator1D.cxx:665
 RooAdaptiveGaussKronrodIntegrator1D.cxx:666
 RooAdaptiveGaussKronrodIntegrator1D.cxx:667
 RooAdaptiveGaussKronrodIntegrator1D.cxx:668
 RooAdaptiveGaussKronrodIntegrator1D.cxx:669
 RooAdaptiveGaussKronrodIntegrator1D.cxx:670
 RooAdaptiveGaussKronrodIntegrator1D.cxx:671
 RooAdaptiveGaussKronrodIntegrator1D.cxx:672
 RooAdaptiveGaussKronrodIntegrator1D.cxx:673
 RooAdaptiveGaussKronrodIntegrator1D.cxx:674
 RooAdaptiveGaussKronrodIntegrator1D.cxx:675
 RooAdaptiveGaussKronrodIntegrator1D.cxx:676
 RooAdaptiveGaussKronrodIntegrator1D.cxx:677
 RooAdaptiveGaussKronrodIntegrator1D.cxx:678
 RooAdaptiveGaussKronrodIntegrator1D.cxx:679
 RooAdaptiveGaussKronrodIntegrator1D.cxx:680
 RooAdaptiveGaussKronrodIntegrator1D.cxx:681
 RooAdaptiveGaussKronrodIntegrator1D.cxx:682
 RooAdaptiveGaussKronrodIntegrator1D.cxx:683
 RooAdaptiveGaussKronrodIntegrator1D.cxx:684
 RooAdaptiveGaussKronrodIntegrator1D.cxx:685
 RooAdaptiveGaussKronrodIntegrator1D.cxx:686
 RooAdaptiveGaussKronrodIntegrator1D.cxx:687
 RooAdaptiveGaussKronrodIntegrator1D.cxx:688
 RooAdaptiveGaussKronrodIntegrator1D.cxx:689
 RooAdaptiveGaussKronrodIntegrator1D.cxx:690
 RooAdaptiveGaussKronrodIntegrator1D.cxx:691
 RooAdaptiveGaussKronrodIntegrator1D.cxx:692
 RooAdaptiveGaussKronrodIntegrator1D.cxx:693
 RooAdaptiveGaussKronrodIntegrator1D.cxx:694
 RooAdaptiveGaussKronrodIntegrator1D.cxx:695
 RooAdaptiveGaussKronrodIntegrator1D.cxx:696
 RooAdaptiveGaussKronrodIntegrator1D.cxx:697
 RooAdaptiveGaussKronrodIntegrator1D.cxx:698
 RooAdaptiveGaussKronrodIntegrator1D.cxx:699
 RooAdaptiveGaussKronrodIntegrator1D.cxx:700
 RooAdaptiveGaussKronrodIntegrator1D.cxx:701
 RooAdaptiveGaussKronrodIntegrator1D.cxx:702
 RooAdaptiveGaussKronrodIntegrator1D.cxx:703
 RooAdaptiveGaussKronrodIntegrator1D.cxx:704
 RooAdaptiveGaussKronrodIntegrator1D.cxx:705
 RooAdaptiveGaussKronrodIntegrator1D.cxx:706
 RooAdaptiveGaussKronrodIntegrator1D.cxx:707
 RooAdaptiveGaussKronrodIntegrator1D.cxx:708
 RooAdaptiveGaussKronrodIntegrator1D.cxx:709
 RooAdaptiveGaussKronrodIntegrator1D.cxx:710
 RooAdaptiveGaussKronrodIntegrator1D.cxx:711
 RooAdaptiveGaussKronrodIntegrator1D.cxx:712
 RooAdaptiveGaussKronrodIntegrator1D.cxx:713
 RooAdaptiveGaussKronrodIntegrator1D.cxx:714
 RooAdaptiveGaussKronrodIntegrator1D.cxx:715
 RooAdaptiveGaussKronrodIntegrator1D.cxx:716
 RooAdaptiveGaussKronrodIntegrator1D.cxx:717
 RooAdaptiveGaussKronrodIntegrator1D.cxx:718
 RooAdaptiveGaussKronrodIntegrator1D.cxx:719
 RooAdaptiveGaussKronrodIntegrator1D.cxx:720
 RooAdaptiveGaussKronrodIntegrator1D.cxx:721
 RooAdaptiveGaussKronrodIntegrator1D.cxx:722
 RooAdaptiveGaussKronrodIntegrator1D.cxx:723
 RooAdaptiveGaussKronrodIntegrator1D.cxx:724
 RooAdaptiveGaussKronrodIntegrator1D.cxx:725
 RooAdaptiveGaussKronrodIntegrator1D.cxx:726
 RooAdaptiveGaussKronrodIntegrator1D.cxx:727
 RooAdaptiveGaussKronrodIntegrator1D.cxx:728
 RooAdaptiveGaussKronrodIntegrator1D.cxx:729
 RooAdaptiveGaussKronrodIntegrator1D.cxx:730
 RooAdaptiveGaussKronrodIntegrator1D.cxx:731
 RooAdaptiveGaussKronrodIntegrator1D.cxx:732
 RooAdaptiveGaussKronrodIntegrator1D.cxx:733
 RooAdaptiveGaussKronrodIntegrator1D.cxx:734
 RooAdaptiveGaussKronrodIntegrator1D.cxx:735
 RooAdaptiveGaussKronrodIntegrator1D.cxx:736
 RooAdaptiveGaussKronrodIntegrator1D.cxx:737
 RooAdaptiveGaussKronrodIntegrator1D.cxx:738
 RooAdaptiveGaussKronrodIntegrator1D.cxx:739
 RooAdaptiveGaussKronrodIntegrator1D.cxx:740
 RooAdaptiveGaussKronrodIntegrator1D.cxx:741
 RooAdaptiveGaussKronrodIntegrator1D.cxx:742
 RooAdaptiveGaussKronrodIntegrator1D.cxx:743
 RooAdaptiveGaussKronrodIntegrator1D.cxx:744
 RooAdaptiveGaussKronrodIntegrator1D.cxx:745
 RooAdaptiveGaussKronrodIntegrator1D.cxx:746
 RooAdaptiveGaussKronrodIntegrator1D.cxx:747
 RooAdaptiveGaussKronrodIntegrator1D.cxx:748
 RooAdaptiveGaussKronrodIntegrator1D.cxx:749
 RooAdaptiveGaussKronrodIntegrator1D.cxx:750
 RooAdaptiveGaussKronrodIntegrator1D.cxx:751
 RooAdaptiveGaussKronrodIntegrator1D.cxx:752
 RooAdaptiveGaussKronrodIntegrator1D.cxx:753
 RooAdaptiveGaussKronrodIntegrator1D.cxx:754
 RooAdaptiveGaussKronrodIntegrator1D.cxx:755
 RooAdaptiveGaussKronrodIntegrator1D.cxx:756
 RooAdaptiveGaussKronrodIntegrator1D.cxx:757
 RooAdaptiveGaussKronrodIntegrator1D.cxx:758
 RooAdaptiveGaussKronrodIntegrator1D.cxx:759
 RooAdaptiveGaussKronrodIntegrator1D.cxx:760
 RooAdaptiveGaussKronrodIntegrator1D.cxx:761
 RooAdaptiveGaussKronrodIntegrator1D.cxx:762
 RooAdaptiveGaussKronrodIntegrator1D.cxx:763
 RooAdaptiveGaussKronrodIntegrator1D.cxx:764
 RooAdaptiveGaussKronrodIntegrator1D.cxx:765
 RooAdaptiveGaussKronrodIntegrator1D.cxx:766
 RooAdaptiveGaussKronrodIntegrator1D.cxx:767
 RooAdaptiveGaussKronrodIntegrator1D.cxx:768
 RooAdaptiveGaussKronrodIntegrator1D.cxx:769
 RooAdaptiveGaussKronrodIntegrator1D.cxx:770
 RooAdaptiveGaussKronrodIntegrator1D.cxx:771
 RooAdaptiveGaussKronrodIntegrator1D.cxx:772
 RooAdaptiveGaussKronrodIntegrator1D.cxx:773
 RooAdaptiveGaussKronrodIntegrator1D.cxx:774
 RooAdaptiveGaussKronrodIntegrator1D.cxx:775
 RooAdaptiveGaussKronrodIntegrator1D.cxx:776
 RooAdaptiveGaussKronrodIntegrator1D.cxx:777
 RooAdaptiveGaussKronrodIntegrator1D.cxx:778
 RooAdaptiveGaussKronrodIntegrator1D.cxx:779
 RooAdaptiveGaussKronrodIntegrator1D.cxx:780
 RooAdaptiveGaussKronrodIntegrator1D.cxx:781
 RooAdaptiveGaussKronrodIntegrator1D.cxx:782
 RooAdaptiveGaussKronrodIntegrator1D.cxx:783
 RooAdaptiveGaussKronrodIntegrator1D.cxx:784
 RooAdaptiveGaussKronrodIntegrator1D.cxx:785
 RooAdaptiveGaussKronrodIntegrator1D.cxx:786
 RooAdaptiveGaussKronrodIntegrator1D.cxx:787
 RooAdaptiveGaussKronrodIntegrator1D.cxx:788
 RooAdaptiveGaussKronrodIntegrator1D.cxx:789
 RooAdaptiveGaussKronrodIntegrator1D.cxx:790
 RooAdaptiveGaussKronrodIntegrator1D.cxx:791
 RooAdaptiveGaussKronrodIntegrator1D.cxx:792
 RooAdaptiveGaussKronrodIntegrator1D.cxx:793
 RooAdaptiveGaussKronrodIntegrator1D.cxx:794
 RooAdaptiveGaussKronrodIntegrator1D.cxx:795
 RooAdaptiveGaussKronrodIntegrator1D.cxx:796
 RooAdaptiveGaussKronrodIntegrator1D.cxx:797
 RooAdaptiveGaussKronrodIntegrator1D.cxx:798
 RooAdaptiveGaussKronrodIntegrator1D.cxx:799
 RooAdaptiveGaussKronrodIntegrator1D.cxx:800
 RooAdaptiveGaussKronrodIntegrator1D.cxx:801
 RooAdaptiveGaussKronrodIntegrator1D.cxx:802
 RooAdaptiveGaussKronrodIntegrator1D.cxx:803
 RooAdaptiveGaussKronrodIntegrator1D.cxx:804
 RooAdaptiveGaussKronrodIntegrator1D.cxx:805
 RooAdaptiveGaussKronrodIntegrator1D.cxx:806
 RooAdaptiveGaussKronrodIntegrator1D.cxx:807
 RooAdaptiveGaussKronrodIntegrator1D.cxx:808
 RooAdaptiveGaussKronrodIntegrator1D.cxx:809
 RooAdaptiveGaussKronrodIntegrator1D.cxx:810
 RooAdaptiveGaussKronrodIntegrator1D.cxx:811
 RooAdaptiveGaussKronrodIntegrator1D.cxx:812
 RooAdaptiveGaussKronrodIntegrator1D.cxx:813
 RooAdaptiveGaussKronrodIntegrator1D.cxx:814
 RooAdaptiveGaussKronrodIntegrator1D.cxx:815
 RooAdaptiveGaussKronrodIntegrator1D.cxx:816
 RooAdaptiveGaussKronrodIntegrator1D.cxx:817
 RooAdaptiveGaussKronrodIntegrator1D.cxx:818
 RooAdaptiveGaussKronrodIntegrator1D.cxx:819
 RooAdaptiveGaussKronrodIntegrator1D.cxx:820
 RooAdaptiveGaussKronrodIntegrator1D.cxx:821
 RooAdaptiveGaussKronrodIntegrator1D.cxx:822
 RooAdaptiveGaussKronrodIntegrator1D.cxx:823
 RooAdaptiveGaussKronrodIntegrator1D.cxx:824
 RooAdaptiveGaussKronrodIntegrator1D.cxx:825
 RooAdaptiveGaussKronrodIntegrator1D.cxx:826
 RooAdaptiveGaussKronrodIntegrator1D.cxx:827
 RooAdaptiveGaussKronrodIntegrator1D.cxx:828
 RooAdaptiveGaussKronrodIntegrator1D.cxx:829
 RooAdaptiveGaussKronrodIntegrator1D.cxx:830
 RooAdaptiveGaussKronrodIntegrator1D.cxx:831
 RooAdaptiveGaussKronrodIntegrator1D.cxx:832
 RooAdaptiveGaussKronrodIntegrator1D.cxx:833
 RooAdaptiveGaussKronrodIntegrator1D.cxx:834
 RooAdaptiveGaussKronrodIntegrator1D.cxx:835
 RooAdaptiveGaussKronrodIntegrator1D.cxx:836
 RooAdaptiveGaussKronrodIntegrator1D.cxx:837
 RooAdaptiveGaussKronrodIntegrator1D.cxx:838
 RooAdaptiveGaussKronrodIntegrator1D.cxx:839
 RooAdaptiveGaussKronrodIntegrator1D.cxx:840
 RooAdaptiveGaussKronrodIntegrator1D.cxx:841
 RooAdaptiveGaussKronrodIntegrator1D.cxx:842
 RooAdaptiveGaussKronrodIntegrator1D.cxx:843
 RooAdaptiveGaussKronrodIntegrator1D.cxx:844
 RooAdaptiveGaussKronrodIntegrator1D.cxx:845
 RooAdaptiveGaussKronrodIntegrator1D.cxx:846
 RooAdaptiveGaussKronrodIntegrator1D.cxx:847
 RooAdaptiveGaussKronrodIntegrator1D.cxx:848
 RooAdaptiveGaussKronrodIntegrator1D.cxx:849
 RooAdaptiveGaussKronrodIntegrator1D.cxx:850
 RooAdaptiveGaussKronrodIntegrator1D.cxx:851
 RooAdaptiveGaussKronrodIntegrator1D.cxx:852
 RooAdaptiveGaussKronrodIntegrator1D.cxx:853
 RooAdaptiveGaussKronrodIntegrator1D.cxx:854
 RooAdaptiveGaussKronrodIntegrator1D.cxx:855
 RooAdaptiveGaussKronrodIntegrator1D.cxx:856
 RooAdaptiveGaussKronrodIntegrator1D.cxx:857
 RooAdaptiveGaussKronrodIntegrator1D.cxx:858
 RooAdaptiveGaussKronrodIntegrator1D.cxx:859
 RooAdaptiveGaussKronrodIntegrator1D.cxx:860
 RooAdaptiveGaussKronrodIntegrator1D.cxx:861
 RooAdaptiveGaussKronrodIntegrator1D.cxx:862
 RooAdaptiveGaussKronrodIntegrator1D.cxx:863
 RooAdaptiveGaussKronrodIntegrator1D.cxx:864
 RooAdaptiveGaussKronrodIntegrator1D.cxx:865
 RooAdaptiveGaussKronrodIntegrator1D.cxx:866
 RooAdaptiveGaussKronrodIntegrator1D.cxx:867
 RooAdaptiveGaussKronrodIntegrator1D.cxx:868
 RooAdaptiveGaussKronrodIntegrator1D.cxx:869
 RooAdaptiveGaussKronrodIntegrator1D.cxx:870
 RooAdaptiveGaussKronrodIntegrator1D.cxx:871
 RooAdaptiveGaussKronrodIntegrator1D.cxx:872
 RooAdaptiveGaussKronrodIntegrator1D.cxx:873
 RooAdaptiveGaussKronrodIntegrator1D.cxx:874
 RooAdaptiveGaussKronrodIntegrator1D.cxx:875
 RooAdaptiveGaussKronrodIntegrator1D.cxx:876
 RooAdaptiveGaussKronrodIntegrator1D.cxx:877
 RooAdaptiveGaussKronrodIntegrator1D.cxx:878
 RooAdaptiveGaussKronrodIntegrator1D.cxx:879
 RooAdaptiveGaussKronrodIntegrator1D.cxx:880
 RooAdaptiveGaussKronrodIntegrator1D.cxx:881
 RooAdaptiveGaussKronrodIntegrator1D.cxx:882
 RooAdaptiveGaussKronrodIntegrator1D.cxx:883
 RooAdaptiveGaussKronrodIntegrator1D.cxx:884
 RooAdaptiveGaussKronrodIntegrator1D.cxx:885
 RooAdaptiveGaussKronrodIntegrator1D.cxx:886
 RooAdaptiveGaussKronrodIntegrator1D.cxx:887
 RooAdaptiveGaussKronrodIntegrator1D.cxx:888
 RooAdaptiveGaussKronrodIntegrator1D.cxx:889
 RooAdaptiveGaussKronrodIntegrator1D.cxx:890
 RooAdaptiveGaussKronrodIntegrator1D.cxx:891
 RooAdaptiveGaussKronrodIntegrator1D.cxx:892
 RooAdaptiveGaussKronrodIntegrator1D.cxx:893
 RooAdaptiveGaussKronrodIntegrator1D.cxx:894
 RooAdaptiveGaussKronrodIntegrator1D.cxx:895
 RooAdaptiveGaussKronrodIntegrator1D.cxx:896
 RooAdaptiveGaussKronrodIntegrator1D.cxx:897
 RooAdaptiveGaussKronrodIntegrator1D.cxx:898
 RooAdaptiveGaussKronrodIntegrator1D.cxx:899
 RooAdaptiveGaussKronrodIntegrator1D.cxx:900
 RooAdaptiveGaussKronrodIntegrator1D.cxx:901
 RooAdaptiveGaussKronrodIntegrator1D.cxx:902
 RooAdaptiveGaussKronrodIntegrator1D.cxx:903
 RooAdaptiveGaussKronrodIntegrator1D.cxx:904
 RooAdaptiveGaussKronrodIntegrator1D.cxx:905
 RooAdaptiveGaussKronrodIntegrator1D.cxx:906
 RooAdaptiveGaussKronrodIntegrator1D.cxx:907
 RooAdaptiveGaussKronrodIntegrator1D.cxx:908
 RooAdaptiveGaussKronrodIntegrator1D.cxx:909
 RooAdaptiveGaussKronrodIntegrator1D.cxx:910
 RooAdaptiveGaussKronrodIntegrator1D.cxx:911
 RooAdaptiveGaussKronrodIntegrator1D.cxx:912
 RooAdaptiveGaussKronrodIntegrator1D.cxx:913
 RooAdaptiveGaussKronrodIntegrator1D.cxx:914
 RooAdaptiveGaussKronrodIntegrator1D.cxx:915
 RooAdaptiveGaussKronrodIntegrator1D.cxx:916
 RooAdaptiveGaussKronrodIntegrator1D.cxx:917
 RooAdaptiveGaussKronrodIntegrator1D.cxx:918
 RooAdaptiveGaussKronrodIntegrator1D.cxx:919
 RooAdaptiveGaussKronrodIntegrator1D.cxx:920
 RooAdaptiveGaussKronrodIntegrator1D.cxx:921
 RooAdaptiveGaussKronrodIntegrator1D.cxx:922
 RooAdaptiveGaussKronrodIntegrator1D.cxx:923
 RooAdaptiveGaussKronrodIntegrator1D.cxx:924
 RooAdaptiveGaussKronrodIntegrator1D.cxx:925
 RooAdaptiveGaussKronrodIntegrator1D.cxx:926
 RooAdaptiveGaussKronrodIntegrator1D.cxx:927
 RooAdaptiveGaussKronrodIntegrator1D.cxx:928
 RooAdaptiveGaussKronrodIntegrator1D.cxx:929
 RooAdaptiveGaussKronrodIntegrator1D.cxx:930
 RooAdaptiveGaussKronrodIntegrator1D.cxx:931
 RooAdaptiveGaussKronrodIntegrator1D.cxx:932
 RooAdaptiveGaussKronrodIntegrator1D.cxx:933
 RooAdaptiveGaussKronrodIntegrator1D.cxx:934
 RooAdaptiveGaussKronrodIntegrator1D.cxx:935
 RooAdaptiveGaussKronrodIntegrator1D.cxx:936
 RooAdaptiveGaussKronrodIntegrator1D.cxx:937
 RooAdaptiveGaussKronrodIntegrator1D.cxx:938
 RooAdaptiveGaussKronrodIntegrator1D.cxx:939
 RooAdaptiveGaussKronrodIntegrator1D.cxx:940
 RooAdaptiveGaussKronrodIntegrator1D.cxx:941
 RooAdaptiveGaussKronrodIntegrator1D.cxx:942
 RooAdaptiveGaussKronrodIntegrator1D.cxx:943
 RooAdaptiveGaussKronrodIntegrator1D.cxx:944
 RooAdaptiveGaussKronrodIntegrator1D.cxx:945
 RooAdaptiveGaussKronrodIntegrator1D.cxx:946
 RooAdaptiveGaussKronrodIntegrator1D.cxx:947
 RooAdaptiveGaussKronrodIntegrator1D.cxx:948
 RooAdaptiveGaussKronrodIntegrator1D.cxx:949
 RooAdaptiveGaussKronrodIntegrator1D.cxx:950
 RooAdaptiveGaussKronrodIntegrator1D.cxx:951
 RooAdaptiveGaussKronrodIntegrator1D.cxx:952
 RooAdaptiveGaussKronrodIntegrator1D.cxx:953
 RooAdaptiveGaussKronrodIntegrator1D.cxx:954
 RooAdaptiveGaussKronrodIntegrator1D.cxx:955
 RooAdaptiveGaussKronrodIntegrator1D.cxx:956
 RooAdaptiveGaussKronrodIntegrator1D.cxx:957
 RooAdaptiveGaussKronrodIntegrator1D.cxx:958
 RooAdaptiveGaussKronrodIntegrator1D.cxx:959
 RooAdaptiveGaussKronrodIntegrator1D.cxx:960
 RooAdaptiveGaussKronrodIntegrator1D.cxx:961
 RooAdaptiveGaussKronrodIntegrator1D.cxx:962
 RooAdaptiveGaussKronrodIntegrator1D.cxx:963
 RooAdaptiveGaussKronrodIntegrator1D.cxx:964
 RooAdaptiveGaussKronrodIntegrator1D.cxx:965
 RooAdaptiveGaussKronrodIntegrator1D.cxx:966
 RooAdaptiveGaussKronrodIntegrator1D.cxx:967
 RooAdaptiveGaussKronrodIntegrator1D.cxx:968
 RooAdaptiveGaussKronrodIntegrator1D.cxx:969
 RooAdaptiveGaussKronrodIntegrator1D.cxx:970
 RooAdaptiveGaussKronrodIntegrator1D.cxx:971
 RooAdaptiveGaussKronrodIntegrator1D.cxx:972
 RooAdaptiveGaussKronrodIntegrator1D.cxx:973
 RooAdaptiveGaussKronrodIntegrator1D.cxx:974
 RooAdaptiveGaussKronrodIntegrator1D.cxx:975
 RooAdaptiveGaussKronrodIntegrator1D.cxx:976
 RooAdaptiveGaussKronrodIntegrator1D.cxx:977
 RooAdaptiveGaussKronrodIntegrator1D.cxx:978
 RooAdaptiveGaussKronrodIntegrator1D.cxx:979
 RooAdaptiveGaussKronrodIntegrator1D.cxx:980
 RooAdaptiveGaussKronrodIntegrator1D.cxx:981
 RooAdaptiveGaussKronrodIntegrator1D.cxx:982
 RooAdaptiveGaussKronrodIntegrator1D.cxx:983
 RooAdaptiveGaussKronrodIntegrator1D.cxx:984
 RooAdaptiveGaussKronrodIntegrator1D.cxx:985
 RooAdaptiveGaussKronrodIntegrator1D.cxx:986
 RooAdaptiveGaussKronrodIntegrator1D.cxx:987
 RooAdaptiveGaussKronrodIntegrator1D.cxx:988
 RooAdaptiveGaussKronrodIntegrator1D.cxx:989
 RooAdaptiveGaussKronrodIntegrator1D.cxx:990
 RooAdaptiveGaussKronrodIntegrator1D.cxx:991
 RooAdaptiveGaussKronrodIntegrator1D.cxx:992
 RooAdaptiveGaussKronrodIntegrator1D.cxx:993
 RooAdaptiveGaussKronrodIntegrator1D.cxx:994
 RooAdaptiveGaussKronrodIntegrator1D.cxx:995
 RooAdaptiveGaussKronrodIntegrator1D.cxx:996
 RooAdaptiveGaussKronrodIntegrator1D.cxx:997
 RooAdaptiveGaussKronrodIntegrator1D.cxx:998
 RooAdaptiveGaussKronrodIntegrator1D.cxx:999
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1000
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1001
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1002
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1003
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1004
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1005
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1006
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1007
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1008
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1009
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1010
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1011
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1012
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1013
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1014
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1015
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1016
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1017
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1018
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1019
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1020
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1021
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1022
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1023
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1024
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1025
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1026
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1027
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1028
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1029
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1030
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1031
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1032
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1033
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1034
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1035
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1036
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1037
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1038
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1039
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1040
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1041
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1042
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1043
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1044
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1045
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1046
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1047
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1048
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1049
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1050
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1051
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1052
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1053
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1054
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1055
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1056
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1057
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1058
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1059
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1060
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1061
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1062
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1063
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1064
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1065
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1066
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1067
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1068
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1069
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1070
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1071
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1072
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1073
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1074
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1075
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1076
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1077
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1078
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1079
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1080
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1081
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1082
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1083
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1084
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1085
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1086
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1087
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1088
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1089
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1090
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1091
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1092
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1093
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1094
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1095
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1096
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1097
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1098
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1099
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1100
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1101
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1102
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1103
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1104
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1105
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1106
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1107
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1108
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1109
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1110
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1111
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1112
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1113
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1114
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1115
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1116
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1117
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1118
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1119
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1120
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1121
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1122
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1123
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1124
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1125
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1126
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1127
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1128
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1129
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1130
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1131
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1132
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1133
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1134
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1135
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1136
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1137
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1138
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1139
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1140
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1141
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1142
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1143
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1144
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1145
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1146
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1147
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1148
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1149
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1150
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1151
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1152
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1153
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1154
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1155
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1156
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1157
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1158
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1159
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1160
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1161
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1162
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1163
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1164
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1165
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1166
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1167
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1168
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1169
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1170
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1171
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1172
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1173
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1174
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1175
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1176
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1177
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1178
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1179
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1180
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1181
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1182
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1183
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1184
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1185
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1186
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1187
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1188
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1189
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1190
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1191
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1192
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1193
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1194
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1195
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1196
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1197
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1198
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1199
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1200
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1201
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1202
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1203
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1204
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1205
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1206
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1207
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1208
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1209
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1210
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1211
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1212
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1213
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1214
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1215
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1216
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1217
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1218
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1219
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1220
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1221
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1222
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1223
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1224
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1225
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1226
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1227
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1228
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1229
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1230
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1231
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1232
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1233
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1234
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1235
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1236
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1237
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1238
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1239
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1240
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1241
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1242
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1243
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1244
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1245
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1246
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1247
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1248
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1249
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1250
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1251
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1252
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1253
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1254
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1255
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1256
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1257
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1258
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1259
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1260
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1261
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1262
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1263
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1264
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1265
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1266
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1267
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1268
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1269
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1270
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1271
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1272
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1273
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1274
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1275
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1276
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1277
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1278
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1279
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1280
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1281
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1282
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1283
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1284
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1285
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1286
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1287
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1288
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1289
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1290
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1291
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1292
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1293
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1294
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1295
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1296
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1297
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1298
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1299
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1300
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1301
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1302
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1303
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1304
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1305
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1306
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1307
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1308
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1309
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1310
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1311
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1312
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1313
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1314
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1315
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1316
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1317
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1318
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1319
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1320
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1321
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1322
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1323
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1324
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1325
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1326
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1327
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1328
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1329
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1330
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1331
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1332
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1333
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1334
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1335
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1336
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1337
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1338
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1339
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1340
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1341
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1342
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1343
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1344
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1345
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1346
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1347
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1348
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1349
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1350
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1351
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1352
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1353
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1354
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1355
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1356
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1357
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1358
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1359
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1360
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1361
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1362
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1363
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1364
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1365
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1366
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1367
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1368
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1369
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1370
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1371
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1372
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1373
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1374
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1375
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1376
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1377
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1378
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1379
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1380
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1381
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1382
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1383
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1384
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1385
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1386
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1387
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1388
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1389
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1390
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1391
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1392
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1393
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1394
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1395
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1396
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1397
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1398
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1399
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1400
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1401
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1402
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1403
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1404
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1405
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1406
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1407
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1408
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1409
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1410
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1411
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1412
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1413
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1414
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1415
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1416
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1417
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1418
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1419
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1420
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1421
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1422
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1423
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1424
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1425
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1426
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1427
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1428
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1429
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1430
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1431
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1432
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1433
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1434
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1435
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1436
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1437
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1438
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1439
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1440
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1441
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1442
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1443
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1444
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1445
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1446
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1447
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1448
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1449
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1450
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1451
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1452
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1453
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1454
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1455
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1456
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1457
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1458
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1459
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1460
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1461
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1462
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1463
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1464
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1465
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1466
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1467
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1468
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1469
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1470
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1471
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1472
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1473
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1474
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1475
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1476
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1477
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1478
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1479
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1480
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1481
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1482
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1483
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1484
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1485
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1486
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1487
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1488
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1489
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1490
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1491
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1492
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1493
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1494
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1495
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1496
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1497
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1498
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1499
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1500
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1501
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1502
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1503
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1504
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1505
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1506
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1507
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1508
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1509
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1510
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1511
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1512
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1513
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1514
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1515
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1516
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1517
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1518
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1519
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1520
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1521
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1522
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1523
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1524
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1525
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1526
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1527
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1528
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1529
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1530
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1531
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1532
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1533
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1534
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1535
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1536
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1537
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1538
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1539
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1540
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1541
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1542
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1543
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1544
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1545
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1546
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1547
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1548
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1549
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1550
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1551
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1552
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1553
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1554
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1555
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1556
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1557
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1558
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1559
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1560
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1561
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1562
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1563
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1564
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1565
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1566
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1567
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1568
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1569
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1570
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1571
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1572
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1573
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1574
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1575
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1576
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1577
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1578
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1579
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1580
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1581
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1582
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1583
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1584
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1585
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1586
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1587
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1588
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1589
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1590
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1591
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1592
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1593
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1594
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1595
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1596
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1597
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1598
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1599
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1600
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1601
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1602
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1603
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1604
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1605
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1606
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1607
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1608
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1609
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1610
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1611
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1612
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1613
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1614
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1615
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1616
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1617
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1618
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1619
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1620
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1621
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1622
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1623
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1624
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1625
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1626
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1627
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1628
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1629
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1630
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1631
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1632
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1633
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1634
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1635
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1636
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1637
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1638
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1639
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1640
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1641
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1642
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1643
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1644
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1645
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1646
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1647
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1648
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1649
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1650
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1651
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1652
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1653
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1654
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1655
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1656
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1657
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1658
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1659
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1660
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1661
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1662
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1663
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1664
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1665
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1666
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1667
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1668
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1669
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1670
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1671
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1672
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1673
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1674
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1675
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1676
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1677
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1678
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1679
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1680
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1681
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1682
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1683
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1684
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1685
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1686
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1687
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1688
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1689
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1690
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1691
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1692
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1693
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1694
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1695
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1696
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1697
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1698
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1699
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1700
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1701
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1702
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1703
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1704
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1705
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1706
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1707
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1708
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1709
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1710
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1711
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1712
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1713
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1714
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1715
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1716
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1717
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1718
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1719
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1720
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1721
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1722
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1723
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1724
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1725
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1726
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1727
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1728
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1729
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1730
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1731
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1732
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1733
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1734
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1735
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1736
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1737
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1738
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1739
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1740
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1741
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1742
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1743
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1744
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1745
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1746
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1747
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1748
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1749
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1750
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1751
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1752
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1753
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1754
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1755
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1756
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1757
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1758
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1759
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1760
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1761
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1762
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1763
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1764
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1765
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1766
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1767
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1768
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1769
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1770
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1771
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1772
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1773
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1774
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1775
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1776
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1777
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1778
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1779
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1780
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1781
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1782
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1783
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1784
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1785
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1786
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1787
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1788
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1789
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1790
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1791
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1792
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1793
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1794
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1795
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1796
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1797
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1798
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1799
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1800
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1801
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1802
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1803
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1804
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1805
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1806
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1807
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1808
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1809
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1810
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1811
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1812
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1813
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1814
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1815
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1816
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1817
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1818
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1819
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1820
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1821
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1822
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1823
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1824
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1825
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1826
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1827
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1828
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1829
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1830
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1831
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1832
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1833
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1834
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1835
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1836
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1837
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1838
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1839
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1840
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1841
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1842
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1843
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1844
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1845
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1846
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1847
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1848
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1849
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1850
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1851
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1852
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1853
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1854
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1855
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1856
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1857
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1858
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1859
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1860
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1861
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1862
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1863
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1864
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1865
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1866
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1867
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1868
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1869
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1870
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1871
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1872
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1873
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1874
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1875
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1876
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1877
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1878
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1879
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1880
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1881
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1882
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1883
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1884
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1885
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1886
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1887
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1888
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1889
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1890
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1891
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1892
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1893
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1894
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1895
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1896
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1897
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1898
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1899
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1900
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1901
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1902
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1903
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1904
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1905
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1906
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1907
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1908
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1909
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1910
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1911
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1912
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1913
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1914
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1915
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1916
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1917
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1918
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1919
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1920
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1921
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1922
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1923
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1924
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1925
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1926
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1927
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1928
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1929
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1930
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1931
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1932
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1933
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1934
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1935
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1936
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1937
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1938
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1939
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1940
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1941
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1942
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1943
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1944
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1945
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1946
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1947
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1948
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1949
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1950
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1951
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1952
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1953
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1954
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1955
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1956
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1957
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1958
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1959
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1960
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1961
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1962
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1963
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1964
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1965
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1966
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1967
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1968
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1969
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1970
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1971
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1972
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1973
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1974
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1975
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1976
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1977
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1978
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1979
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1980
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1981
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1982
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1983
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1984
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1985
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1986
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1987
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1988
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1989
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1990
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1991
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1992
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1993
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1994
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1995
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1996
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1997
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1998
 RooAdaptiveGaussKronrodIntegrator1D.cxx:1999
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2000
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2001
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2002
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2003
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2004
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2005
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2006
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2007
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2008
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2009
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2010
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2011
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2012
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2013
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2014
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2015
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2016
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2017
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2018
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2019
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2020
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2021
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2022
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2023
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2024
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2025
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2026
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2027
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2028
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2029
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2030
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2031
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2032
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2033
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2034
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2035
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2036
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2037
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2038
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2039
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2040
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2041
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2042
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2043
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2044
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2045
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2046
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2047
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2048
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2049
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2050
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2051
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2052
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2053
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2054
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2055
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2056
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2057
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2058
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2059
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2060
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2061
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2062
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2063
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2064
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2065
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2066
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2067
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2068
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2069
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2070
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2071
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2072
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2073
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2074
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2075
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2076
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2077
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2078
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2079
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2080
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2081
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2082
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2083
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2084
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2085
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2086
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2087
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2088
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2089
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2090
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2091
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2092
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2093
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2094
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2095
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2096
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2097
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2098
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2099
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2100
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2101
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2102
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2103
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2104
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2105
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2106
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2107
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2108
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2109
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2110
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2111
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2112
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2113
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2114
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2115
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2116
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2117
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2118
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2119
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2120
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2121
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2122
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2123
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2124
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2125
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2126
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2127
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2128
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2129
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2130
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2131
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2132
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2133
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2134
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2135
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2136
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2137
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2138
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2139
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2140
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2141
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2142
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2143
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2144
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2145
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2146
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2147
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2148
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2149
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2150
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2151
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2152
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2153
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2154
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2155
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2156
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2157
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2158
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2159
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2160
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2161
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2162
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2163
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2164
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2165
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2166
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2167
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2168
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2169
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2170
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2171
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2172
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2173
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2174
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2175
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2176
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2177
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2178
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2179
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2180
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2181
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2182
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2183
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2184
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2185
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2186
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2187
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2188
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2189
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2190
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2191
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2192
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2193
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2194
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2195
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2196
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2197
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2198
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2199
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2200
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2201
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2202
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2203
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2204
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2205
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2206
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2207
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2208
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2209
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2210
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2211
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2212
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2213
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2214
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2215
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2216
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2217
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2218
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2219
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2220
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2221
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2222
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2223
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2224
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2225
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2226
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2227
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2228
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2229
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2230
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2231
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2232
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2233
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2234
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2235
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2236
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2237
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2238
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2239
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2240
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2241
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2242
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2243
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2244
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2245
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2246
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2247
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2248
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2249
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2250
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2251
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2252
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2253
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2254
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2255
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2256
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2257
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2258
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2259
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2260
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2261
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2262
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2263
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2264
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2265
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2266
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2267
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2268
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2269
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2270
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2271
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2272
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2273
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2274
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2275
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2276
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2277
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2278
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2279
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2280
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2281
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2282
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2283
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2284
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2285
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2286
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2287
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2288
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2289
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2290
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2291
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2292
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2293
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2294
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2295
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2296
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2297
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2298
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2299
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2300
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2301
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2302
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2303
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2304
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2305
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2306
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2307
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2308
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2309
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2310
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2311
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2312
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2313
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2314
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2315
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2316
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2317
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2318
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2319
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2320
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2321
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2322
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2323
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2324
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2325
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2326
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2327
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2328
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2329
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2330
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2331
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2332
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2333
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2334
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2335
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2336
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2337
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2338
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2339
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2340
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2341
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2342
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2343
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2344
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2345
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2346
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2347
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2348
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2349
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2350
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2351
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2352
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2353
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2354
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2355
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2356
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2357
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2358
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2359
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2360
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2361
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2362
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2363
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2364
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2365
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2366
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2367
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2368
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2369
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2370
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2371
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2372
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2373
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2374
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2375
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2376
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2377
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2378
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2379
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2380
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2381
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2382
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2383
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2384
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2385
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2386
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2387
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2388
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2389
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2390
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2391
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2392
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2393
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2394
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2395
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2396
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2397
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2398
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2399
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2400
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2401
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2402
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2403
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2404
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2405
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2406
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2407
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2408
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2409
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2410
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2411
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2412
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2413
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2414
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2415
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2416
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2417
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2418
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2419
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2420
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2421
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2422
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2423
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2424
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2425
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2426
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2427
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2428
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2429
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2430
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2431
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2432
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2433
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2434
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2435
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2436
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2437
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2438
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2439
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2440
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2441
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2442
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2443
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2444
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2445
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2446
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2447
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2448
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2449
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2450
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2451
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2452
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2453
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2454
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2455
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2456
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2457
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2458
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2459
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2460
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2461
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2462
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2463
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2464
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2465
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2466
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2467
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2468
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2469
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2470
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2471
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2472
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2473
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2474
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2475
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2476
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2477
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2478
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2479
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2480
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2481
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2482
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2483
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2484
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2485
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2486
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2487
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2488
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2489
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2490
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2491
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2492
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2493
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2494
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2495
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2496
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2497
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2498
 RooAdaptiveGaussKronrodIntegrator1D.cxx:2499