#include <algorithm>
#include <cstdlib>
#include "TObjString.h"
#include "TMath.h"
#include "TString.h"
#include "TTree.h"
#include "TLeaf.h"
#include "TH1.h"
#include "TH2.h"
#include "TList.h"
#include "TSpline.h"
#include "TVector.h"
#include "TMatrixD.h"
#include "TMatrixDSymEigen.h"
#include "TVectorD.h"
#include "TTreeFormula.h"
#include "TXMLEngine.h"
#include "TROOT.h"
#ifndef ROOT_TMVA_Tools
#include "TMVA/Tools.h"
#endif
#ifndef ROOT_TMVA_Config
#include "TMVA/Config.h"
#endif
#ifndef ROOT_TMVA_Event
#include "TMVA/Event.h"
#endif
#ifndef ROOT_TMVA_Version
#include "TMVA/Version.h"
#endif
#ifndef ROOT_TMVA_PDF
#include "TMVA/PDF.h"
#endif
#ifndef ROOT_TMVA_MsgLogger
#include "TMVA/MsgLogger.h"
#endif
using namespace std;
TMVA::Tools* TMVA::Tools::fgTools = 0;
TMVA::Tools& TMVA::gTools() { return TMVA::Tools::Instance(); }
TMVA::Tools& TMVA::Tools::Instance() { return fgTools?*(fgTools): *(fgTools = new Tools()); }
void TMVA::Tools::DestroyInstance() { if (fgTools != 0) { delete fgTools; fgTools=0; } }
TMVA::Tools::Tools() :
fRegexp("$&|!%^&()'<>?= "),
fLogger(new MsgLogger("Tools")),
fXMLEngine(new TXMLEngine())
{
}
TMVA::Tools::~Tools()
{
delete fLogger;
delete fXMLEngine;
}
Double_t TMVA::Tools::NormVariable( Double_t x, Double_t xmin, Double_t xmax )
{
return 2*(x - xmin)/(xmax - xmin) - 1.0;
}
Double_t TMVA::Tools::GetSeparation( TH1* S, TH1* B ) const
{
Double_t separation = 0;
if ((S->GetNbinsX() != B->GetNbinsX()) || (S->GetNbinsX() <= 0)) {
Log() << kFATAL << "<GetSeparation> signal and background"
<< " histograms have different number of bins: "
<< S->GetNbinsX() << " : " << B->GetNbinsX() << Endl;
}
if (S->GetXaxis()->GetXmin() != B->GetXaxis()->GetXmin() ||
S->GetXaxis()->GetXmax() != B->GetXaxis()->GetXmax() ||
S->GetXaxis()->GetXmax() <= S->GetXaxis()->GetXmin()) {
Log() << kINFO << S->GetXaxis()->GetXmin() << " " << B->GetXaxis()->GetXmin()
<< " " << S->GetXaxis()->GetXmax() << " " << B->GetXaxis()->GetXmax()
<< " " << S->GetXaxis()->GetXmax() << " " << S->GetXaxis()->GetXmin() << Endl;
Log() << kFATAL << "<GetSeparation> signal and background"
<< " histograms have different or invalid dimensions:" << Endl;
}
Int_t nstep = S->GetNbinsX();
Double_t intBin = (S->GetXaxis()->GetXmax() - S->GetXaxis()->GetXmin())/nstep;
Double_t nS = S->GetSumOfWeights()*intBin;
Double_t nB = B->GetSumOfWeights()*intBin;
if (nS > 0 && nB > 0) {
for (Int_t bin=0; bin<nstep; bin++) {
Double_t s = S->GetBinContent( bin )/Double_t(nS);
Double_t b = B->GetBinContent( bin )/Double_t(nB);
if (s + b > 0) separation += 0.5*(s - b)*(s - b)/(s + b);
}
separation *= intBin;
}
else {
Log() << kWARNING << "<GetSeparation> histograms with zero entries: "
<< nS << " : " << nB << " cannot compute separation"
<< Endl;
separation = 0;
}
return separation;
}
Double_t TMVA::Tools::GetSeparation( const PDF& pdfS, const PDF& pdfB ) const
{
Double_t xmin = pdfS.GetXmin();
Double_t xmax = pdfS.GetXmax();
if (xmin != pdfB.GetXmin() || xmax != pdfB.GetXmax()) {
Log() << kFATAL << "<GetSeparation> Mismatch in PDF limits: "
<< xmin << " " << pdfB.GetXmin() << xmax << " " << pdfB.GetXmax() << Endl;
}
Double_t separation = 0;
Int_t nstep = 100;
Double_t intBin = (xmax - xmin)/Double_t(nstep);
for (Int_t bin=0; bin<nstep; bin++) {
Double_t x = (bin + 0.5)*intBin + xmin;
Double_t s = pdfS.GetVal( x );
Double_t b = pdfB.GetVal( x );
if (s + b > 0) separation += (s - b)*(s - b)/(s + b);
}
separation *= (0.5*intBin);
return separation;
}
void TMVA::Tools::ComputeStat( const std::vector<TMVA::Event*>& events, std::vector<Float_t>* valVec,
Double_t& meanS, Double_t& meanB,
Double_t& rmsS, Double_t& rmsB,
Double_t& xmin, Double_t& xmax,
Int_t signalClass, Bool_t norm )
{
if (0 == valVec)
Log() << kFATAL << "<Tools::ComputeStat> value vector is zero pointer" << Endl;
if ( events.size() != valVec->size() )
Log() << kFATAL << "<Tools::ComputeStat> event and value vector have different lengths "
<< events.size() << "!=" << valVec->size() << Endl;
Long64_t entries = valVec->size();
Double_t* varVecS = new Double_t[entries];
Double_t* varVecB = new Double_t[entries];
xmin = +DBL_MAX;
xmax = -DBL_MAX;
Long64_t nEventsS = -1;
Long64_t nEventsB = -1;
Double_t xmin_ = 0, xmax_ = 0;
if (norm) {
xmin_ = *std::min( valVec->begin(), valVec->end() );
xmax_ = *std::max( valVec->begin(), valVec->end() );
}
for (Int_t ievt=0; ievt<entries; ievt++) {
Double_t theVar = (*valVec)[ievt];
if (norm) theVar = Tools::NormVariable( theVar, xmin_, xmax_ );
if (Int_t(events[ievt]->GetClass()) == signalClass ){
varVecS[++nEventsS] = theVar;
}
else {
varVecB[++nEventsB] = theVar;
}
if (theVar > xmax) xmax = theVar;
if (theVar < xmin) xmin = theVar;
}
++nEventsS;
++nEventsB;
meanS = TMath::Mean( nEventsS, varVecS );
meanB = TMath::Mean( nEventsB, varVecB );
rmsS = TMath::RMS ( nEventsS, varVecS );
rmsB = TMath::RMS ( nEventsB, varVecB );
delete [] varVecS;
delete [] varVecB;
}
TMatrixD* TMVA::Tools::GetSQRootMatrix( TMatrixDSym* symMat )
{
Int_t n = symMat->GetNrows();
TMatrixDSymEigen* eigen = new TMatrixDSymEigen( *symMat );
TMatrixD* si = new TMatrixD( eigen->GetEigenVectors() );
TMatrixD* s = new TMatrixD( *si );
si->Transpose( *si );
TMatrixD* d = new TMatrixD( n, n);
d->Mult( (*si), (*symMat) ); (*d) *= (*s);
Int_t i, j;
Double_t epsilon = 1.0e-8;
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
if ((i != j && TMath::Abs((*d)(i,j))/TMath::Sqrt((*d)(i,i)*(*d)(j,j)) > epsilon) ||
(i == j && (*d)(i,i) < 0)) {
Log() << kWARNING << "<GetSQRootMatrix> error in matrix diagonalization; printed S and B" << Endl;
}
}
}
for (i=0; i<n; i++) for (j=0; j<n; j++) if (j != i) (*d)(i,j) = 0;
for (i=0; i<n; i++) (*d)(i,i) = TMath::Sqrt((*d)(i,i));
TMatrixD* sqrtMat = new TMatrixD( n, n );
sqrtMat->Mult( (*s), (*d) );
(*sqrtMat) *= (*si);
sqrtMat->Invert();
delete eigen;
delete s;
delete si;
delete d;
return sqrtMat;
}
const TMatrixD* TMVA::Tools::GetCorrelationMatrix( const TMatrixD* covMat )
{
if (covMat == 0) return 0;
Int_t nvar = covMat->GetNrows();
if (nvar != covMat->GetNcols())
Log() << kFATAL << "<GetCorrelationMatrix> input matrix not quadratic" << Endl;
TMatrixD* corrMat = new TMatrixD( nvar, nvar );
for (Int_t ivar=0; ivar<nvar; ivar++) {
for (Int_t jvar=0; jvar<nvar; jvar++) {
if (ivar != jvar) {
Double_t d = (*covMat)(ivar, ivar)*(*covMat)(jvar, jvar);
if (d > 0) (*corrMat)(ivar, jvar) = (*covMat)(ivar, jvar)/TMath::Sqrt(d);
else {
Log() << kWARNING << "<GetCorrelationMatrix> zero variances for variables "
<< "(" << ivar << ", " << jvar << ")" << Endl;
(*corrMat)(ivar, jvar) = 0;
}
}
else (*corrMat)(ivar, ivar) = 1.0;
}
}
return corrMat;
}
TH1* TMVA::Tools::projNormTH1F( TTree* theTree, const TString& theVarName,
const TString& name, Int_t nbins,
Double_t xmin, Double_t xmax, const TString& cut )
{
xmax += 0.00001;
TH1* hist = new TH1F( name, name, nbins, xmin, xmax );
hist->Sumw2();
theTree->Project( name, theVarName, cut );
NormHist( hist );
return hist;
}
Double_t TMVA::Tools::NormHist( TH1* theHist, Double_t norm )
{
if (!theHist) return 0;
if (theHist->GetSumw2N() == 0) theHist->Sumw2();
if (theHist->GetSumOfWeights() != 0) {
Double_t w = ( theHist->GetSumOfWeights()
*(theHist->GetXaxis()->GetXmax() - theHist->GetXaxis()->GetXmin())/theHist->GetNbinsX() );
if (w > 0) theHist->Scale( norm/w );
return w;
}
return 1.0;
}
TList* TMVA::Tools::ParseFormatLine( TString formatString, const char* sep )
{
TList* labelList = new TList();
labelList->SetOwner();
while (formatString.First(sep)==0) formatString.Remove(0,1);
while (formatString.Length()>0) {
if (formatString.First(sep) == -1) {
labelList->Add(new TObjString(formatString.Data()));
formatString="";
break;
}
Ssiz_t posSep = formatString.First(sep);
labelList->Add(new TObjString(TString(formatString(0,posSep)).Data()));
formatString.Remove(0,posSep+1);
while (formatString.First(sep)==0) formatString.Remove(0,1);
}
return labelList;
}
vector<Int_t>* TMVA::Tools::ParseANNOptionString( TString theOptions, Int_t nvar,
vector<Int_t>* nodes )
{
TList* list = TMVA::Tools::ParseFormatLine( theOptions, ":" );
if (list->GetSize() < 1) {
Log() << kFATAL << "<ParseANNOptionString> unrecognized option string: " << theOptions << Endl;
}
nodes->push_back( atoi( ((TObjString*)list->At(0))->GetString() ) );
Int_t a;
if (list->GetSize() > 1) {
for (Int_t i=1; i<list->GetSize(); i++) {
TString s = ((TObjString*)list->At(i))->GetString();
s.ToUpper();
if (s(0) == 'N') {
if (s.Length() > 1) nodes->push_back( nvar + atoi(&s[1]) );
else nodes->push_back( nvar );
}
else if ((a = atoi( s )) > 0) nodes->push_back( atoi(s ) );
else {
Log() << kFATAL << "<ParseANNOptionString> unrecognized option string: " << theOptions << Endl;
}
}
}
return nodes;
}
Bool_t TMVA::Tools::CheckSplines( const TH1* theHist, const TSpline* theSpline )
{
const Double_t sanityCrit = 0.01;
Bool_t retval = kTRUE;
for (Int_t ibin=1; ibin<=theHist->GetNbinsX(); ibin++) {
Double_t x = theHist->GetBinCenter( ibin );
Double_t yh = theHist->GetBinContent( ibin );
Double_t ys = theSpline->Eval( x );
if (ys + yh > 0) {
Double_t dev = 0.5*(ys - yh)/(ys + yh);
if (TMath::Abs(dev) > sanityCrit) {
Log() << kFATAL << "<CheckSplines> Spline failed sanity criterion; "
<< " relative deviation from histogram: " << dev
<< " in (bin, value): (" << ibin << ", " << x << ")" << Endl;
retval = kFALSE;
}
}
}
return retval;
}
std::vector<Double_t> TMVA::Tools::MVADiff( std::vector<Double_t>& a, std::vector<Double_t>& b )
{
if (a.size() != b.size()) {
throw;
}
vector<Double_t> result(a.size());
for (UInt_t i=0; i<a.size();i++) result[i]=a[i]-b[i];
return result;
}
void TMVA::Tools::Scale( std::vector<Double_t>& v, Double_t f )
{
for (UInt_t i=0; i<v.size();i++) v[i]*=f;
}
void TMVA::Tools::Scale( std::vector<Float_t>& v, Float_t f )
{
for (UInt_t i=0; i<v.size();i++) v[i]*=f;
}
void TMVA::Tools::UsefulSortAscending( std::vector<vector<Double_t> >& v, std::vector<TString>* vs ){
UInt_t nArrays=v.size();
Double_t temp;
if (nArrays > 0) {
UInt_t sizeofarray=v[0].size();
for (UInt_t i=0; i<sizeofarray; i++) {
for (UInt_t j=sizeofarray-1; j>i; j--) {
if (v[0][j-1] > v[0][j]) {
for (UInt_t k=0; k< nArrays; k++) {
temp = v[k][j-1]; v[k][j-1] = v[k][j]; v[k][j] = temp;
}
if (NULL != vs) {
TString temps = (*vs)[j-1]; (*vs)[j-1] = (*vs)[j]; (*vs)[j] = temps;
}
}
}
}
}
}
void TMVA::Tools::UsefulSortDescending( std::vector<std::vector<Double_t> >& v, std::vector<TString>* vs )
{
UInt_t nArrays=v.size();
Double_t temp;
if (nArrays > 0) {
UInt_t sizeofarray=v[0].size();
for (UInt_t i=0; i<sizeofarray; i++) {
for (UInt_t j=sizeofarray-1; j>i; j--) {
if (v[0][j-1] < v[0][j]) {
for (UInt_t k=0; k< nArrays; k++) {
temp = v[k][j-1]; v[k][j-1] = v[k][j]; v[k][j] = temp;
}
if (NULL != vs) {
TString temps = (*vs)[j-1]; (*vs)[j-1] = (*vs)[j]; (*vs)[j] = temps;
}
}
}
}
}
}
Double_t TMVA::Tools::GetMutualInformation( const TH2F& h_ )
{
Double_t hi = h_.Integral();
if (hi == 0) return -1;
TH2F h( h_ );
h.RebinX(2);
h.RebinY(2);
Double_t mutualInfo = 0.;
Int_t maxBinX = h.GetNbinsX();
Int_t maxBinY = h.GetNbinsY();
for (Int_t x = 1; x <= maxBinX; x++) {
for (Int_t y = 1; y <= maxBinY; y++) {
Double_t p_xy = h.GetBinContent(x,y)/hi;
Double_t p_x = h.Integral(x,x,1,maxBinY)/hi;
Double_t p_y = h.Integral(1,maxBinX,y,y)/hi;
if (p_x > 0. && p_y > 0. && p_xy > 0.){
mutualInfo += p_xy*TMath::Log(p_xy / (p_x * p_y));
}
}
}
return mutualInfo;
}
Double_t TMVA::Tools::GetCorrelationRatio( const TH2F& h_ )
{
Double_t hi = h_.Integral();
if (hi == 0.) return -1;
TH2F h( h_ );
h.RebinX(2);
h.RebinY(2);
Double_t corrRatio = 0.;
Double_t y_mean = h.ProjectionY()->GetMean();
for (Int_t ix=1; ix<=h.GetNbinsX(); ix++) {
corrRatio += (h.Integral(ix,ix,1,h.GetNbinsY())/hi)*pow((GetYMean_binX(h,ix)-y_mean),2);
}
corrRatio /= pow(h.ProjectionY()->GetRMS(),2);
return corrRatio;
}
Double_t TMVA::Tools::GetYMean_binX( const TH2& h, Int_t bin_x )
{
if (h.Integral(bin_x,bin_x,1,h.GetNbinsY()) == 0.) {return 0;}
Double_t y_bin_mean = 0.;
TH1* py = h.ProjectionY();
for (Int_t y = 1; y <= h.GetNbinsY(); y++){
y_bin_mean += h.GetBinContent(bin_x,y)*py->GetBinCenter(y);
}
y_bin_mean /= h.Integral(bin_x,bin_x,1,h.GetNbinsY());
return y_bin_mean;
}
TH2F* TMVA::Tools::TransposeHist( const TH2F& h )
{
if (h.GetNbinsX() != h.GetNbinsY()) {
Log() << kFATAL << "<TransposeHist> cannot transpose non-quadratic histogram" << endl;
}
TH2F *transposedHisto = new TH2F( h );
for (Int_t ix=1; ix <= h.GetNbinsX(); ix++){
for (Int_t iy=1; iy <= h.GetNbinsY(); iy++){
transposedHisto->SetBinContent(iy,ix,h.GetBinContent(ix,iy));
}
}
return transposedHisto;
}
Bool_t TMVA::Tools::CheckForSilentOption( const TString& cs ) const
{
Bool_t isSilent = kFALSE;
TString s( cs );
s.ToLower();
s.ReplaceAll(" ","");
if (s.Contains("silent") && !s.Contains("silent=f")) {
if (!s.Contains("!silent") || s.Contains("silent=t")) isSilent = kTRUE;
}
return isSilent;
}
Bool_t TMVA::Tools::CheckForVerboseOption( const TString& cs ) const
{
Bool_t isVerbose = kFALSE;
TString s( cs );
s.ToLower();
s.ReplaceAll(" ","");
std::vector<TString> v = SplitString( s, ':' );
for (std::vector<TString>::iterator it = v.begin(); it != v.end(); it++) {
if ((*it == "v" || *it == "verbose") && !it->Contains("!")) isVerbose = kTRUE;
}
return isVerbose;
}
void TMVA::Tools::UsefulSortDescending( std::vector<Double_t>& v )
{
vector< vector<Double_t> > vtemp;
vtemp.push_back(v);
UsefulSortDescending(vtemp);
v = vtemp[0];
}
void TMVA::Tools::UsefulSortAscending( std::vector<Double_t>& v )
{
vector<vector<Double_t> > vtemp;
vtemp.push_back(v);
UsefulSortAscending(vtemp);
v = vtemp[0];
}
Int_t TMVA::Tools::GetIndexMaxElement( std::vector<Double_t>& v )
{
if (v.size()==0) return -1;
Int_t pos=0; Double_t mx=v[0];
for (UInt_t i=0; i<v.size(); i++){
if (v[i] > mx){
mx=v[i];
pos=i;
}
}
return pos;
}
Int_t TMVA::Tools::GetIndexMinElement( std::vector<Double_t>& v )
{
if (v.size()==0) return -1;
Int_t pos=0; Double_t mn=v[0];
for (UInt_t i=0; i<v.size(); i++){
if (v[i] < mn){
mn=v[i];
pos=i;
}
}
return pos;
}
Bool_t TMVA::Tools::ContainsRegularExpression( const TString& s )
{
Bool_t regular = kFALSE;
for (Int_t i = 0; i < Tools::fRegexp.Length(); i++)
if (s.Contains( Tools::fRegexp[i] )) { regular = kTRUE; break; }
return regular;
}
TString TMVA::Tools::ReplaceRegularExpressions( const TString& s, const TString& r )
{
TString snew = s;
for (Int_t i = 0; i < Tools::fRegexp.Length(); i++)
snew.ReplaceAll( Tools::fRegexp[i], r );
snew.ReplaceAll( "::", r );
snew.ReplaceAll( "$", "_S_" );
snew.ReplaceAll( "&", "_A_" );
snew.ReplaceAll( "%", "_MOD_" );
snew.ReplaceAll( "|", "_O_" );
snew.ReplaceAll( "*", "_T_" );
snew.ReplaceAll( "/", "_D_" );
snew.ReplaceAll( "+", "_P_" );
snew.ReplaceAll( "-", "_M_" );
snew.ReplaceAll( " ", "_" );
snew.ReplaceAll( "[", "_" );
snew.ReplaceAll( "]", "_" );
snew.ReplaceAll( "=", "_E_" );
snew.ReplaceAll( ">", "_GT_" );
snew.ReplaceAll( "<", "_LT_" );
snew.ReplaceAll( "(", "_" );
snew.ReplaceAll( ")", "_" );
return snew;
}
const TString& TMVA::Tools::Color( const TString& c )
{
static TString gClr_none = "" ;
static TString gClr_white = "\033[1;37m";
static TString gClr_black = "\033[30m";
static TString gClr_blue = "\033[34m";
static TString gClr_red = "\033[1;31m" ;
static TString gClr_yellow = "\033[1;33m";
static TString gClr_darkred = "\033[31m";
static TString gClr_darkgreen = "\033[32m";
static TString gClr_darkyellow = "\033[33m";
static TString gClr_bold = "\033[1m" ;
static TString gClr_black_b = "\033[30m" ;
static TString gClr_lblue_b = "\033[1;34m" ;
static TString gClr_cyan_b = "\033[0;36m" ;
static TString gClr_lgreen_b = "\033[1;32m";
static TString gClr_blue_bg = "\033[44m";
static TString gClr_red_bg = "\033[1;41m";
static TString gClr_whiteonblue = "\033[1;44m";
static TString gClr_whiteongreen = "\033[1;42m";
static TString gClr_grey_bg = "\033[47m";
static TString gClr_reset = "\033[0m";
if (!gConfig().UseColor()) return gClr_none;
if (c == "white" ) return gClr_white;
if (c == "blue" ) return gClr_blue;
if (c == "black" ) return gClr_black;
if (c == "lightblue") return gClr_cyan_b;
if (c == "yellow") return gClr_yellow;
if (c == "red" ) return gClr_red;
if (c == "dred" ) return gClr_darkred;
if (c == "dgreen") return gClr_darkgreen;
if (c == "lgreenb") return gClr_lgreen_b;
if (c == "dyellow") return gClr_darkyellow;
if (c == "bold") return gClr_bold;
if (c == "bblack") return gClr_black_b;
if (c == "blue_bgd") return gClr_blue_bg;
if (c == "red_bgd" ) return gClr_red_bg;
if (c == "white_on_blue" ) return gClr_whiteonblue;
if (c == "white_on_green") return gClr_whiteongreen;
if (c == "reset") return gClr_reset;
cout << "Unknown color " << c << endl;
exit(1);
return gClr_none;
}
void TMVA::Tools::FormattedOutput( const std::vector<Double_t>& values, const std::vector<TString>& V,
const TString titleVars, const TString titleValues, MsgLogger& logger,
TString format )
{
UInt_t nvar = V.size();
if ((UInt_t)values.size() != nvar) {
logger << kFATAL << "<FormattedOutput> fatal error with dimensions: "
<< values.size() << " OR " << " != " << nvar << Endl;
}
UInt_t maxL = 7;
std::vector<UInt_t> vLengths;
for (UInt_t ivar=0; ivar<nvar; ivar++) maxL = TMath::Max( (UInt_t)V[ivar].Length(), maxL );
maxL = TMath::Max( (UInt_t)titleVars.Length(), maxL );
UInt_t maxV = 7;
maxV = TMath::Max( (UInt_t)titleValues.Length() + 1, maxL );
UInt_t clen = maxL + maxV + 3;
for (UInt_t i=0; i<clen; i++) logger << "-";
logger << Endl;
logger << setw(maxL) << titleVars << ":";
logger << setw(maxV+1) << titleValues << ":";
logger << Endl;
for (UInt_t i=0; i<clen; i++) logger << "-";
logger << Endl;
for (UInt_t irow=0; irow<nvar; irow++) {
logger << setw(maxL) << V[irow] << ":";
logger << setw(maxV+1) << Form( format.Data(), values[irow] );
logger << Endl;
}
for (UInt_t i=0; i<clen; i++) logger << "-";
logger << Endl;
}
void TMVA::Tools::FormattedOutput( const TMatrixD& M, const std::vector<TString>& V, MsgLogger& logger )
{
UInt_t nvar = V.size();
if ((UInt_t)M.GetNcols() != nvar || (UInt_t)M.GetNrows() != nvar) {
logger << kFATAL << "<FormattedOutput> fatal error with dimensions: "
<< M.GetNcols() << " OR " << M.GetNrows() << " != " << nvar << " ==> abort" << Endl;
}
UInt_t minL = 7;
UInt_t maxL = minL;
std::vector<UInt_t> vLengths;
for (UInt_t ivar=0; ivar<nvar; ivar++) {
vLengths.push_back(TMath::Max( (UInt_t)V[ivar].Length(), minL ));
maxL = TMath::Max( vLengths.back(), maxL );
}
UInt_t clen = maxL+1;
for (UInt_t icol=0; icol<nvar; icol++) clen += vLengths[icol]+1;
for (UInt_t i=0; i<clen; i++) logger << "-";
logger << Endl;
logger << setw(maxL+1) << " ";
for (UInt_t icol=0; icol<nvar; icol++) logger << setw(vLengths[icol]+1) << V[icol];
logger << Endl;
for (UInt_t irow=0; irow<nvar; irow++) {
logger << setw(maxL) << V[irow] << ":";
for (UInt_t icol=0; icol<nvar; icol++) {
logger << setw(vLengths[icol]+1) << Form( "%+1.3f", M(irow,icol) );
}
logger << Endl;
}
for (UInt_t i=0; i<clen; i++) logger << "-";
logger << Endl;
}
void TMVA::Tools::FormattedOutput( const TMatrixD& M,
const std::vector<TString>& vert, const std::vector<TString>& horiz,
MsgLogger& logger )
{
UInt_t nvvar = vert.size();
UInt_t nhvar = horiz.size();
UInt_t minL = 7;
UInt_t maxL = minL;
std::vector<UInt_t> vLengths;
for (UInt_t ivar=0; ivar<nvvar; ivar++) {
vLengths.push_back(TMath::Max( (UInt_t)vert[ivar].Length(), minL ));
maxL = TMath::Max( vLengths.back(), maxL );
}
UInt_t minLh = 7;
UInt_t maxLh = minLh;
std::vector<UInt_t> hLengths;
for (UInt_t ivar=0; ivar<nhvar; ivar++) {
hLengths.push_back(TMath::Max( (UInt_t)horiz[ivar].Length(), minL ));
maxLh = TMath::Max( hLengths.back(), maxLh );
}
UInt_t clen = maxLh+1;
for (UInt_t icol=0; icol<nhvar; icol++) clen += hLengths[icol]+1;
for (UInt_t i=0; i<clen; i++) logger << "-";
logger << Endl;
logger << setw(maxL+1) << " ";
for (UInt_t icol=0; icol<nhvar; icol++) logger << setw(hLengths[icol]+1) << horiz[icol];
logger << Endl;
for (UInt_t irow=0; irow<nvvar; irow++) {
logger << setw(maxL) << vert[irow] << ":";
for (UInt_t icol=0; icol<nhvar; icol++) {
logger << setw(hLengths[icol]+1) << Form( "%+1.3f", M(irow,icol) );
}
logger << Endl;
}
for (UInt_t i=0; i<clen; i++) logger << "-";
logger << Endl;
}
TString TMVA::Tools::GetXTitleWithUnit( const TString& title, const TString& unit )
{
return ( unit == "" ? title : ( title + " [" + unit + "]" ) );
}
TString TMVA::Tools::GetYTitleWithUnit( const TH1& h, const TString& unit, Bool_t normalised )
{
TString retval = ( normalised ? "(1/N) " : "" );
retval += Form( "dN_{ }/^{ }%.3g %s", h.GetXaxis()->GetBinWidth(1), unit.Data() );
return retval;
}
void TMVA::Tools::WriteFloatArbitraryPrecision( Float_t val, ostream& os )
{
os << val << " :: ";
void * c = &val;
for (int i=0; i<4; i++) {
Int_t ic = *((char*)c+i)-'\0';
if (ic<0) ic+=256;
os << ic << " ";
}
os << ":: ";
}
void TMVA::Tools::ReadFloatArbitraryPrecision( Float_t& val, istream& is )
{
Float_t a = 0;
is >> a;
TString dn;
is >> dn;
Int_t c[4];
void * ap = &a;
for (int i=0; i<4; i++) {
is >> c[i];
*((char*)ap+i) = '\0'+c[i];
}
is >> dn;
val = a;
}
void* TMVA::Tools::AddChild( void* parent, const char* childname, const char* content ) {
return gTools().xmlengine().NewChild(parent, 0, childname, content);
}
void* TMVA::Tools::GetChild( void* parent, const char* childname )
{
void* ch = xmlengine().GetChild(parent);
if (childname != 0) {
while (ch!=0 && strcmp(xmlengine().GetNodeName(ch),childname) != 0) ch = xmlengine().GetNext(ch);
}
return ch;
}
void* TMVA::Tools::GetNextChild( void* prevchild, const char* childname )
{
void* ch = xmlengine().GetNext(prevchild);
if (childname != 0) {
while (ch!=0 && strcmp(xmlengine().GetNodeName(ch),childname)!=0) ch = xmlengine().GetNext(ch);
}
return ch;
}
const char* TMVA::Tools::GetContent( void* node )
{
return xmlengine().GetNodeContent(node);
}
std::vector<TString> TMVA::Tools::SplitString(const TString& theOpt, const char separator ) const
{
std::vector<TString> splitV;
TString splitOpt(theOpt);
splitOpt.ReplaceAll("\n"," ");
splitOpt = splitOpt.Strip(TString::kBoth,separator);
while (splitOpt.Length()>0) {
if ( !splitOpt.Contains(separator) ) {
splitV.push_back(splitOpt);
break;
}
else {
TString toSave = splitOpt(0,splitOpt.First(separator));
splitV.push_back(toSave);
splitOpt = splitOpt(splitOpt.First(separator),splitOpt.Length());
}
splitOpt = splitOpt.Strip(TString::kLeading,separator);
}
return splitV;
}
TString TMVA::Tools::StringFromInt( Long_t i )
{
std::stringstream s;
s << i;
return TString(s.str().c_str());
}
TString TMVA::Tools::StringFromDouble( Double_t d )
{
std::stringstream s;
s << d;
return TString(s.str().c_str());
}
void TMVA::Tools::WriteTMatrixDToXML(void* node, const char* name, TMatrixD* mat)
{
void* matnode = xmlengine().NewChild(node, 0, name);
xmlengine().NewAttr(matnode,0,"Rows", StringFromInt(mat->GetNrows()) );
xmlengine().NewAttr(matnode,0,"Columns", StringFromInt(mat->GetNcols()) );
std::stringstream s;
for (Int_t row = 0; row<mat->GetNrows(); row++) {
for (Int_t col = 0; col<mat->GetNcols(); col++) {
s << (*mat)[row][col] << " ";
}
}
xmlengine().AddRawLine( matnode, s.str().c_str() );
}
void TMVA::Tools::WriteTVectorDToXML(void* node, const char* name, TVectorD* vec)
{
TMatrixD mat(1,vec->GetNoElements(),&((*vec)[0]));
WriteTMatrixDToXML(node, name, &mat);
}
void TMVA::Tools::ReadTVectorDFromXML(void* node, const char* name, TVectorD* vec)
{
TMatrixD mat(1,vec->GetNoElements(),&((*vec)[0]));
ReadTMatrixDFromXML(node,name,&mat);
for (int i=0;i<vec->GetNoElements();++i){
(*vec)[i]=mat[0][i];
}
}
void TMVA::Tools::ReadTMatrixDFromXML(void* node, const char* name, TMatrixD* mat)
{
if (strcmp(xmlengine().GetNodeName(node),name)!=0){
Log() << kWARNING << "Possible Error: Name of matrix in weight file"
<< " does not match name of matrix passed as argument!" << Endl;
}
Int_t nrows, ncols;
ReadAttr(node, "Rows", nrows);
ReadAttr(node, "Columns", ncols);
if (mat->GetNrows() != nrows || mat->GetNcols() != ncols){
Log() << kWARNING << "Possible Error: Dimension of matrix in weight file"
<< " does not match dimension of matrix passed as argument!" << Endl;
mat->ResizeTo(nrows,ncols);
}
const char* content = xmlengine().GetNodeContent(node);
std::stringstream s(content);
for (Int_t row = 0; row<nrows; row++) {
for (Int_t col = 0; col<ncols; col++) {
s >> (*mat)[row][col];
}
}
}
void TMVA::Tools::TMVAWelcomeMessage()
{
cout << endl;
cout << Color("bold") << "TMVA -- Toolkit for Multivariate Data Analysis" << Color("reset") << endl;
cout << " " << "Version " << TMVA_RELEASE << ", " << TMVA_RELEASE_DATE << endl;
cout << " " << "Copyright (C) 2005-2009 CERN, MPI-K Heidelberg, Us of Bonn and Victoria" << endl;
cout << " " << "Home page http://tmva.sourceforge.net" << endl;
cout << " " << "All rights reserved, please read http://tmva.sf.net/license.txt" << endl << endl;
}
void TMVA::Tools::TMVAVersionMessage( MsgLogger& logger )
{
logger << "___________TMVA Version " << TMVA_RELEASE << ", " << TMVA_RELEASE_DATE
<< "" << Endl;
}
void TMVA::Tools::ROOTVersionMessage( MsgLogger& logger )
{
static const char *months[] = { "Jan","Feb","Mar","Apr","May",
"Jun","Jul","Aug","Sep","Oct",
"Nov","Dec" };
Int_t idatqq = gROOT->GetVersionDate();
Int_t iday = idatqq%100;
Int_t imonth = (idatqq/100)%100;
Int_t iyear = (idatqq/10000);
TString versionDate = Form("%s %d, %4d",months[imonth-1],iday,iyear);
logger << "You are running ROOT Version: " << gROOT->GetVersion() << ", " << versionDate << Endl;
}
void TMVA::Tools::TMVAWelcomeMessage( MsgLogger& logger, EWelcomeMessage msgType )
{
switch (msgType) {
case kStandardWelcomeMsg:
logger << Color("white") << "TMVA -- Toolkit for Multivariate Analysis" << Color("reset") << Endl;
logger << "Copyright (C) 2005-2006 CERN, LAPP & MPI-K Heidelberg and Victoria U." << Endl;
logger << "Home page http://tmva.sourceforge.net" << Endl;
logger << "All rights reserved, please read http://tmva.sf.net/license.txt" << Endl << Endl;
break;
case kIsometricWelcomeMsg:
logger << " ___ ___ ___ ___ " << Endl;
logger << " /\\ \\ /\\__\\ /\\__\\ /\\ \\ " << Endl;
logger << " \\:\\ \\ /::| | /:/ / /::\\ \\ " << Endl;
logger << " \\:\\ \\ /:|:| | /:/ / /:/\\:\\ \\ " << Endl;
logger << " /::\\ \\ /:/|:|__|__ /:/__/ ___ /::\\~\\:\\ \\ " << Endl;
logger << " /:/\\:\\__\\ /:/ |::::\\__\\ |:| | /\\__\\ /:/\\:\\ \\:\\__\\ " << Endl;
logger << " /:/ \\/__/ \\/__/~~/:/ / |:| |/:/ / \\/__\\:\\/:/ / " << Endl;
logger << "/:/ / /:/ / |:|__/:/ / \\::/ / " << Endl;
logger << "\\/__/ /:/ / \\::::/__/ /:/ / " << Endl;
logger << " /:/ / ~~~~ /:/ / " << Endl;
logger << " \\/__/ \\/__/ " << Endl << Endl;
break;
case kBlockWelcomeMsg:
logger << Endl;
logger << "_|_|_|_|_| _| _| _| _| _|_| " << Endl;
logger << " _| _|_| _|_| _| _| _| _| " << Endl;
logger << " _| _| _| _| _| _| _|_|_|_| " << Endl;
logger << " _| _| _| _| _| _| _| " << Endl;
logger << " _| _| _| _| _| _| " << Endl << Endl;
break;
case kLeanWelcomeMsg:
logger << Endl;
logger << "_/_/_/_/_/ _/ _/ _/ _/ _/_/ " << Endl;
logger << " _/ _/_/ _/_/ _/ _/ _/ _/ " << Endl;
logger << " _/ _/ _/ _/ _/ _/ _/_/_/_/ " << Endl;
logger << " _/ _/ _/ _/ _/ _/ _/ " << Endl;
logger << "_/ _/ _/ _/ _/ _/ " << Endl << Endl;
break;
case kLogoWelcomeMsg:
logger << Endl;
logger << "_/_/_/_/_/ _| _| _| _| _|_| " << Endl;
logger << " _/ _|_| _|_| _| _| _| _| " << Endl;
logger << " _/ _| _| _| _| _| _|_|_|_| " << Endl;
logger << " _/ _| _| _| _| _| _| " << Endl;
logger << "_/ _| _| _| _| _| " << Endl << Endl;
break;
case kSmall1WelcomeMsg:
logger << " _____ __ ____ ___ " << Endl;
logger << "|_ _| \\/ \\ \\ / /_\\ " << Endl;
logger << " | | | |\\/| |\\ V / _ \\ " << Endl;
logger << " |_| |_| |_| \\_/_/ \\_\\" << Endl << Endl;
break;
case kSmall2WelcomeMsg:
logger << " _____ __ ____ ___ " << Endl;
logger << "|_ _| \\/ \\ \\ / / \\ " << Endl;
logger << " | | | |\\/| |\\ \\ / / _ \\ " << Endl;
logger << " | | | | | | \\ V / ___ \\ " << Endl;
logger << " |_| |_| |_| \\_/_/ \\_\\ " << Endl << Endl;
break;
case kOriginalWelcomeMsgColor:
logger << kINFO << "" << Color("red")
<< "_______________________________________" << Color("reset") << Endl;
logger << kINFO << "" << Color("blue")
<< Color("red_bgd") << Color("bwhite") << " // " << Color("reset")
<< Color("white") << Color("blue_bgd")
<< "|\\ /|| \\ // /\\\\\\\\\\\\\\\\\\\\\\\\ \\ \\ \\ " << Color("reset") << Endl;
logger << kINFO << ""<< Color("blue")
<< Color("red_bgd") << Color("white") << "// " << Color("reset")
<< Color("white") << Color("blue_bgd")
<< "| \\/ || \\// /--\\\\\\\\\\\\\\\\\\\\\\\\ \\ \\ \\" << Color("reset") << Endl;
break;
case kOriginalWelcomeMsgBW:
logger << kINFO << ""
<< "_______________________________________" << Endl;
logger << kINFO << " // "
<< "|\\ /|| \\ // /\\\\\\\\\\\\\\\\\\\\\\\\ \\ \\ \\ " << Endl;
logger << kINFO << "// "
<< "| \\/ || \\// /--\\\\\\\\\\\\\\\\\\\\\\\\ \\ \\ \\" << Endl;
break;
default:
logger << kFATAL << "unknown message type: " << msgType << Endl;
}
}
Bool_t TMVA::Tools::HistoHasEquidistantBins(const TH1& h)
{
return !(h.GetXaxis()->GetXbins()->fN);
}