/////////////////////////////////////////////////////////////////////////
//
// 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #308
//
// Examples on normalization of p.d.f.s,
// integration of p.d.fs, construction
// of cumulative distribution functions from p.d.f.s
// in two dimensions
//
// 07/2008 - Wouter Verkerke
//
/////////////////////////////////////////////////////////////////////////
#ifndef __CINT__
#include "RooGlobalFunc.h"
#endif
#include "RooRealVar.h"
#include "RooGaussian.h"
#include "RooConstVar.h"
#include "RooProdPdf.h"
#include "RooAbsReal.h"
#include "RooPlot.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "TH1.h"
using namespace RooFit ;
void rf308_normintegration2d()
{
// S e t u p m o d e l
// ---------------------
// Create observables x,y
RooRealVar x("x","x",-10,10) ;
RooRealVar y("y","y",-10,10) ;
// Create p.d.f. gaussx(x,-2,3), gaussy(y,2,2)
RooGaussian gx("gx","gx",x,RooConst(-2),RooConst(3)) ;
RooGaussian gy("gy","gy",y,RooConst(+2),RooConst(2)) ;
// Create gxy = gx(x)*gy(y)
RooProdPdf gxy("gxy","gxy",RooArgSet(gx,gy)) ;
// R e t r i e v e r a w & n o r m a l i z e d v a l u e s o f R o o F i t p . d . f . s
// --------------------------------------------------------------------------------------------------
// Return 'raw' unnormalized value of gx
cout << "gxy = " << gxy.getVal() << endl ;
// Return value of gxy normalized over x _and_ y in range [-10,10]
RooArgSet nset_xy(x,y) ;
cout << "gx_Norm[x,y] = " << gxy.getVal(&nset_xy) << endl ;
// Create object representing integral over gx
// which is used to calculate gx_Norm[x,y] == gx / gx_Int[x,y]
RooAbsReal* igxy = gxy.createIntegral(RooArgSet(x,y)) ;
cout << "gx_Int[x,y] = " << igxy->getVal() << endl ;
// NB: it is also possible to do the following
// Return value of gxy normalized over x in range [-10,10] (i.e. treating y as parameter)
RooArgSet nset_x(x) ;
cout << "gx_Norm[x] = " << gxy.getVal(&nset_x) << endl ;
// Return value of gxy normalized over y in range [-10,10] (i.e. treating x as parameter)
RooArgSet nset_y(y) ;
cout << "gx_Norm[y] = " << gxy.getVal(&nset_y) << endl ;
// I n t e g r a t e n o r m a l i z e d p d f o v e r s u b r a n g e
// ----------------------------------------------------------------------------
// Define a range named "signal" in x from -5,5
x.setRange("signal",-5,5) ;
y.setRange("signal",-3,3) ;
// Create an integral of gxy_Norm[x,y] over x and y in range "signal"
// This is the fraction of of p.d.f. gxy_Norm[x,y] which is in the
// range named "signal"
RooAbsReal* igxy_sig = gxy.createIntegral(RooArgSet(x,y),NormSet(RooArgSet(x,y)),Range("signal")) ;
cout << "gx_Int[x,y|signal]_Norm[x,y] = " << igxy_sig->getVal() << endl ;
// C o n s t r u c t c u m u l a t i v e d i s t r i b u t i o n f u n c t i o n f r o m p d f
// -----------------------------------------------------------------------------------------------------
// Create the cumulative distribution function of gx
// i.e. calculate Int[-10,x] gx(x') dx'
RooAbsReal* gxy_cdf = gxy.createCdf(RooArgSet(x,y)) ;
// Plot cdf of gx versus x
TH1* hh_cdf = gxy_cdf->createHistogram("hh_cdf",x,Binning(40),YVar(y,Binning(40))) ;
hh_cdf->SetLineColor(kBlue) ;
new TCanvas("rf308_normintegration2d","rf308_normintegration2d",600,600) ;
gPad->SetLeftMargin(0.15) ; hh_cdf->GetZaxis()->SetTitleOffset(1.8) ;
hh_cdf->Draw("surf") ;
}