//Author: Eddy Offermann
// This macro shows several ways to perform a linear least-squares
// analysis . To keep things simple we fit a straight line to 4
// data points
// The first 4 methods use the linear algebra package to find
// x such that min (A x - b)^T (A x - b) where A and b
// are calculated with the data points and the functional expression :
//
// 1. Normal equations:
// Expanding the expression (A x - b)^T (A x - b) and taking the
// derivative wrt x leads to the "Normal Equations":
// A^T A x = A^T b where A^T A is a positive definite matrix. Therefore,
// a Cholesky decomposition scheme can be used to calculate its inverse .
// This leads to the solution x = (A^T A)^-1 A^T b . All this is done in
// routine NormalEqn . We made it a bit more complicated by giving the
// data weights .
// Numerically this is not the best way to proceed because effctively the
// condition number of A^T A is twice as large as that of A, making inversion
// more difficult
//
// 2. SVD
// One can show that solving A x = b for x with A of size (m x n) and m > n
// through a Singular Value Decomposition is equivalent to miminizing
// (A x - b)^T (A x - b)
// Numerically , this is the most stable method of all 5
//
// 3. Pseudo Inverse
// Here we calulate the generalized matrix inverse ("pseudo inverse") by
// solving A X = Unit for matrix X through an SVD . The formal expression for
// is X = (A^T A)^-1 A^T . Then we multiply it by b .
// Numerically, not as good as 2 and not as fast . In general it is not a
// good idea to solve a set of linear equations with a matrix inversion .
//
// 4. Pseudo Inverse , brute force
// The pseudo inverse is calculated brute force through a series of matrix
// manipulations . It shows nicely some operations in the matrix package,
// but is otherwise a big "no no" .
//
// 5. Least-squares analysis with Minuit
// An objective function L is minimized by Minuit, where
// L = sum_i { (y - c_0 -c_1 * x / e)^2 }
// Minuit will calculate numerically the derivative of L wrt c_0 and c_1 .
// It has not been told that these derivatives are linear in the parameters
// c_0 and c_1 .
// For ill-conditioned linear problems it is better to use the fact it is
// a linear fit as in 2 .
//
// Another interesting thing is the way we assign data to the vectors and
// matrices through adoption .
// This allows data assignment without physically moving bytes around .
//
// USAGE
// -----
// This macro can be execued via CINT or via ACLIC
// - via CINT, do
// root > .x solveLinear.C
// - via ACLIC
// root > gSystem->Load("libMatrix");
// root > gSystem->Load("libGpad");
// root > .x solveLinear.C+
//
#ifndef __CINT__
#include "Riostream.h"
#include "TMatrixD.h"
#include "TVectorD.h"
#include "TGraphErrors.h"
#include "TDecompChol.h"
#include "TDecompSVD.h"
#include "TF1.h"
#endif
void solveLinear(Double_t eps = 1.e-12)
{
#ifdef __CINT__
gSystem->Load("libMatrix");
#endif
cout << "Perform the fit y = c0 + c1 * x in four different ways" << endl;
const Int_t nrVar = 2;
const Int_t nrPnts = 4;
Double_t ax[] = {0.0,1.0,2.0,3.0};
Double_t ay[] = {1.4,1.5,3.7,4.1};
Double_t ae[] = {0.5,0.2,1.0,0.5};
// Make the vectors 'Use" the data : they are not copied, the vector data
// pointer is just set appropriately
TVectorD x; x.Use(nrPnts,ax);
TVectorD y; y.Use(nrPnts,ay);
TVectorD e; e.Use(nrPnts,ae);
TMatrixD A(nrPnts,nrVar);
TMatrixDColumn(A,0) = 1.0;
TMatrixDColumn(A,1) = x;
cout << " - 1. solve through Normal Equations" << endl;
const TVectorD c_norm = NormalEqn(A,y,e);
cout << " - 2. solve through SVD" << endl;
// numerically preferred method
// first bring the weights in place
TMatrixD Aw = A;
TVectorD yw = y;
for (Int_t irow = 0; irow < A.GetNrows(); irow++) {
TMatrixDRow(Aw,irow) *= 1/e(irow);
yw(irow) /= e(irow);
}
TDecompSVD svd(Aw);
Bool_t ok;
const TVectorD c_svd = svd.Solve(yw,ok);
cout << " - 3. solve with pseudo inverse" << endl;
const TMatrixD pseudo1 = svd.Invert();
TVectorD c_pseudo1 = yw;
c_pseudo1 *= pseudo1;
cout << " - 4. solve with pseudo inverse, calculated brute force" << endl;
TMatrixDSym AtA(TMatrixDSym::kAtA,Aw);
const TMatrixD pseudo2 = AtA.Invert() * Aw.T();
TVectorD c_pseudo2 = yw;
c_pseudo2 *= pseudo2;
cout << " - 5. Minuit through TGraph" << endl;
TGraphErrors *gr = new TGraphErrors(nrPnts,ax,ay,0,ae);
TF1 *f1 = new TF1("f1","pol1",0,5);
gr->Fit("f1","Q");
TVectorD c_graph(nrVar);
c_graph(0) = f1->GetParameter(0);
c_graph(1) = f1->GetParameter(1);
// Check that all 4 answers are identical within a certain
// tolerance . The 1e-12 is somewhat arbitrary . It turns out that
// the TGraph fit is different by a few times 1e-13.
Bool_t same = kTRUE;
same &= VerifyVectorIdentity(c_norm,c_svd,0,eps);
same &= VerifyVectorIdentity(c_norm,c_pseudo1,0,eps);
same &= VerifyVectorIdentity(c_norm,c_pseudo2,0,eps);
same &= VerifyVectorIdentity(c_norm,c_graph,0,eps);
if (same)
cout << " All solutions are the same within tolerance of " << eps << endl;
else
cout << " Some solutions differ more than the allowed tolerance of " << eps << endl;
}