testUnfold1.C: DESY, 14.10.2008 | Math tutorials | testrandom.C: Performance test of all the ROOT random generator (TRandom, TRandom1, TRandom2 and TRandom3) |
// Author: Stefan Schmitt // DESY, 14.10.2008 // Version 13, with changes to TUnfold.C // // History: // Version 12, with improvements to TUnfold.cxx // Version 11, print chi**2 and number of degrees of freedom // Version 10, with bug-fix in TUnfold.cxx // Version 9, with bug-fix in TUnfold.cxx, TUnfold.h // Version 8, with bug-fix in TUnfold.cxx, TUnfold.h // Version 7, with bug-fix in TUnfold.cxx, TUnfold.h // Version 6a, fix problem with dynamic array allocation under windows // Version 6, re-include class MyUnfold in the example // Version 5, move class MyUnfold to seperate files // Version 4, with bug-fix in TUnfold.C // Version 3, with bug-fix in TUnfold.C // Version 2, with changed ScanLcurve() arguments // Version 1, remove L curve analysis, use ScanLcurve() method instead // Version 0, L curve analysis included here #include <TMath.h> #include <TCanvas.h> #include <TRandom3.h> #include <TFitter.h> #include <TF1.h> #include <TStyle.h> #include <TVector.h> #include <TGraph.h> #include "TUnfold.h" using namespace std; /////////////////////////////////////////////////////////////////////// // // Test program for the class MyUnfold, derived from TUnfold // // (1) Generate Monte Carlo and Data events // The events consist of // signal // background // // The signal is a resonance. It is generated with a Breit-Wigner, // smeared by a Gaussian // // (2) Unfold the data. The result is: // The background level // The shape of the resonance, corrected for detector effects // // The regularisation is done on the curvature, excluding the bins // near the peak. // // (3) fit the unfolded distribution, including the correlation matrix // /////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////// // // Example of a class derived from TUnfold // /////////////////////////////////////////////////////////////////////// class MyUnfold : public TUnfold { public: MyUnfold(TH2 const *hist_A, EHistMap histmap, ERegMode regmode = kRegModeSize); // constructor, in parallel to original constructor virtual Double_t DoUnfold(Double_t const &tau); // derived method, to store the result of the unfolding for a given parameter tau using TUnfold::DoUnfold; // otherwise TUnfold methods will be hidden void TauAnalysis(void); // method for the alternative analysis void ResetUser(Int_t const *binMap); // reset alternative analysis inline Double_t GetTauUser(void) const { return fTauBest; } // query result of alternative analysis protected: Int_t const *fBinMap; // bin mapping to extract the global correlation Double_t fTauBest; // tau with the smallest correlation Double_t fRhoMin; // smallest correlation //ClassDef(MyUnfold,0); }; //ClassImp(MyUnfold) MyUnfold::MyUnfold(TH2 const *hist_A, EHistMap histmap,ERegMode regmode) : TUnfold(hist_A,histmap,regmode) { // The arguments are passed to the parent class constructor // Then the local variables are initialized // reset members of this class ResetUser(0); }; Double_t MyUnfold::DoUnfold(Double_t const &tau) { // The argument is passed to the corresponding method of the parent class // Then the new analysis code is called // this calls the original unfolding Double_t r=TUnfold::DoUnfold(tau); // here do our private analysis to find the best choice of tau TauAnalysis(); return r; }; void MyUnfold::ResetUser(Int_t const *binMap) { // Reset the local variables // Arguments: // binMap: the bin mapping for determining the correlation // See documentation of TUnfold: Bin averaging of the output fBinMap=binMap; fTauBest=0; fRhoMin=1.0; } void MyUnfold::TauAnalysis(void) { // User analysis: extract tau with smallest correlation // This is a very simple analysis: the tau value with the smallest // globla correlation is stored if(GetRhoAvg()<fRhoMin) { fRhoMin=GetRhoAvg(); fTauBest=fTau; } } TRandom *rnd=0; TH2D *gHistInvEMatrix; TVirtualFitter *gFitter=0; void chisquare_corr(Int_t &npar, Double_t * /*gin */, Double_t &f, Double_t *u, Int_t /* flag */) { // Minimization function for H1s using a Chisquare method // only one-dim ensional histograms are supported // Corelated errors are taken from an external inverse covariance matrix // stored in a 2-dimensional histogram Double_t x; TH1 *hfit = (TH1*)gFitter->GetObjectFit(); TF1 *f1 = (TF1*)gFitter->GetUserFunc(); f1->InitArgs(&x,u); npar = f1->GetNpar(); f = 0; Int_t npfit = 0; Int_t nPoints=hfit->GetNbinsX(); Double_t *df=new Double_t[nPoints]; for (Int_t i=0;i<nPoints;i++) { x = hfit->GetBinCenter(i+1); TF1::RejectPoint(kFALSE); df[i] = f1->EvalPar(&x,u)-hfit->GetBinContent(i+1); if (TF1::RejectedPoint()) df[i]=0.0; else npfit++; } for (Int_t i=0;i<nPoints;i++) { for (Int_t j=0;j<nPoints;j++) { f += df[i]*df[j]*gHistInvEMatrix->GetBinContent(i+1,j+1); } } delete[] df; f1->SetNumberFitPoints(npfit); } Double_t bw_func(Double_t *x,Double_t *par) { Double_t dm=x[0]-par[1]; return par[0]/(dm*dm+par[2]*par[2]); } // generate an event // output: // negative mass: background event // positive mass: signal event Double_t GenerateEvent(Double_t const &bgr, // relative fraction of background Double_t const &mass, // peak position Double_t const &gamma) // peak width { Double_t t; if(rnd->Rndm()>bgr) { // generate signal event // with positive mass do { do { t=rnd->Rndm(); } while(t>=1.0); t=TMath::Tan((t-0.5)*TMath::Pi())*gamma+mass; } while(t<=0.0); return t; } else { // generate background event // generate events following a power-law distribution // f(E) = K * TMath::power((E0+E),N0) static Double_t const E0=2.4; static Double_t const N0=2.9; do { do { t=rnd->Rndm(); } while(t>=1.0); // the mass is returned negative // In our example a convenient way to indicate it is a background event. t= -(TMath::Power(1.-t,1./(1.-N0))-1.0)*E0; } while(t>=0.0); return t; } } // smear the event to detector level // input: // mass on generator level (mTrue>0 !) // output: // mass on detector level Double_t DetectorEvent(Double_t const &mTrue) { // smear by double-gaussian static Double_t frac=0.1; static Double_t wideBias=0.03; static Double_t wideSigma=0.5; static Double_t smallBias=0.0; static Double_t smallSigma=0.1; if(rnd->Rndm()>frac) { return rnd->Gaus(mTrue+smallBias,smallSigma); } else { return rnd->Gaus(mTrue+wideBias,wideSigma); } } //int main(int argc, char *argv[]) int testUnfold2() { // switch on histogram errors TH1::SetDefaultSumw2(); // show fit result gStyle->SetOptFit(1111); // random generator rnd=new TRandom3(); // data and MC luminosity, cross-section Double_t const luminosityData=10000; Double_t const luminosityMC=1000000; Double_t const crossSection=1.0; Int_t const nDet=250; Int_t const nGen=100; Double_t const xminDet=0.0; Double_t const xmaxDet=10.0; Double_t const xminGen=0.0; Double_t const xmaxGen=10.0; //============================================ // generate MC distribution // TH1D *histMgenMC=new TH1D("MgenMC",";mass(gen)",nGen,xminGen,xmaxGen); TH1D *histMdetMC=new TH1D("MdetMC",";mass(det)",nDet,xminDet,xmaxDet); TH2D *histMdetGenMC=new TH2D("MdetgenMC",";mass(det);mass(gen)",nDet,xminDet,xmaxDet, nGen,xminGen,xmaxGen); Int_t neventMC=rnd->Poisson(luminosityMC*crossSection); for(Int_t i=0;i<neventMC;i++) { Double_t mGen=GenerateEvent(0.3, // relative fraction of background 4.0, // peak position in MC 0.2); // peak width in MC Double_t mDet=DetectorEvent(TMath::Abs(mGen)); // the generated mass is negative for background // and positive for signal // so it will be filled in the underflow bin // this is very convenient for the unfolding: // the unfolded result will contain the number of background // events in the underflow bin // generated MC distribution (for comparison only) histMgenMC->Fill(mGen,luminosityData/luminosityMC); // reconstructed MC distribution (for comparison only) histMdetMC->Fill(mDet,luminosityData/luminosityMC); // matrix describing how the generator input migrates to the // reconstructed level. Unfolding input. // NOTE on underflow/overflow bins: // (1) the detector level under/overflow bins are used for // normalisation ("efficiency" correction) // in our toy example, these bins are populated from tails // of the initial MC distribution. // (2) the generator level underflow/overflow bins are // unfolded. In this example: // underflow bin: background events reconstructed in the detector // overflow bin: signal events generated at masses > xmaxDet // for the unfolded result these bins will be filled // -> the background normalisation will be contained in the underflow bin histMdetGenMC->Fill(mDet,mGen,luminosityData/luminosityMC); } //============================================ // generate data distribution // TH1D *histMgenData=new TH1D("MgenData",";mass(gen)",nGen,xminGen,xmaxGen); TH1D *histMdetData=new TH1D("MdetData",";mass(det)",nDet,xminDet,xmaxDet); Int_t neventData=rnd->Poisson(luminosityData*crossSection); for(Int_t i=0;i<neventData;i++) { Double_t mGen=GenerateEvent(0.4, // relative fraction of background 3.8, // peak position 0.15); // peak width Double_t mDet=DetectorEvent(TMath::Abs(mGen)); // generated data mass for comparison plots // for real data, we do not have this histogram histMgenData->Fill(mGen); // reconstructed mass, unfolding input histMdetData->Fill(mDet); } //========================================================================= // set up the unfolding MyUnfold unfold(histMdetGenMC,TUnfold::kHistMapOutputVert, TUnfold::kRegModeNone); // regularisation //---------------- // exclude the bins near the peak, because the curvature at the peak // is high (and the regularisation will enforce a small curvature everywhere) // // in real life, these parameters will have to be optimized, depending on // the data peak position Double_t estimatedPeakPosition=3.8; Int_t nPeek=3; TUnfold::ERegMode regMode=TUnfold::kRegModeCurvature; Int_t iPeek=(Int_t)(nGen*(estimatedPeakPosition-xminGen)/(xmaxGen-xminGen) // offset 1.5 // accounts for start bin 1 // and rounding errors +0.5 +1.5); // regularize output bins 1..iPeek-nPeek unfold.RegularizeBins(1,1,iPeek-nPeek,regMode); // regularize output bins iPeek+nPeek..nGen unfold.RegularizeBins(iPeek+nPeek,1,nGen-(iPeek+nPeek),regMode); // set up bin map, excluding underflow and overflow bins Int_t *binMap=new Int_t[nGen+2]; for(Int_t i=1;i<=nGen;i++) binMap[i]=i; binMap[0]=-1; binMap[nGen+1]=-1; // unfolding //----------- // set input distribution and bias scale (=0) if(unfold.SetInput(histMdetData,0.0)>=10000) { std::cout<<"Unfolding result may be wrong\n"; } // reset user scan and define bin map unfold.ResetUser(binMap); Int_t nScan=30; Double_t tauMin=1.E-8; Double_t tauMax=10.; Int_t iBest; TSpline *logTauX,*logTauY; TGraph *lCurve; // this method scans the parameter tau and finds the kink in the L curve // finally, the unfolding is done for the best choice of tau iBest=unfold.ScanLcurve(nScan,tauMin,tauMax,&lCurve,&logTauX,&logTauY); std::cout<<"tau="<<unfold.GetTau()<<"\n"; std::cout<<"chi**2="<<unfold.GetChi2A()<<"+"<<unfold.GetChi2L() <<" / "<<unfold.GetNdf()<<"\n"; Double_t t[1],x[1],y[1]; logTauX->GetKnot(iBest,t[0],x[0]); logTauY->GetKnot(iBest,t[0],y[0]); TGraph *bestLcurve=new TGraph(1,x,y); TGraph *bestLogTauX=new TGraph(1,t,x); // save point with smallest correlation as a graph Double_t logTau=TMath::Log10(unfold.GetTauUser()); x[0]=logTauX->Eval(logTau); y[0]=lCurve->Eval(x[0]); TGraph *lCurveUser=new TGraph(1,x,y); TGraph *logTauXuser=new TGraph(1,&logTau,x); TH1D *histMunfold=new TH1D("Unfolded",";mass(gen)",nGen,xminGen,xmaxGen); unfold.GetOutput(histMunfold,binMap); TH1D *histMdetFold=unfold.GetFoldedOutput("FoldedBack","mass(det)", xminDet,xmaxDet); TH2D *histRhoij=new TH2D("rho_ij",";mass(gen);mass(gen)", nGen,xminGen,xmaxGen,nGen,xminGen,xmaxGen); unfold.GetRhoIJ(histRhoij,binMap); // store global correlation coefficients with underflow/overflow bins removed TH1D *histRhoi=new TH1D("rho_I","mass",nGen,xminGen,xmaxGen); // store inverse of error matrix with underflow/overflow bins removed // this is needed for the fit below gHistInvEMatrix=new TH2D("invEmat",";mass(gen);mass(gen)", nGen,xminGen,xmaxGen,nGen,xminGen,xmaxGen); unfold.GetRhoI(histRhoi,gHistInvEMatrix,binMap); delete[] binMap; binMap=0; //====================================================================== // fit Breit-Wigner shape to unfolded data, using the full error matrix // here we use a "user" chi**2 function to take into account // the full covariance matrix gFitter=TVirtualFitter::Fitter(histMunfold); gFitter->SetFCN(chisquare_corr); TF1 *bw=new TF1("bw",bw_func,xminGen,xmaxGen,3); bw->SetParameter(0,1000.); bw->SetParameter(1,3.8); bw->SetParameter(2,0.2); // for (wrong!) fitting without correlations, drop the option "U" histMunfold->Fit(bw,"UE"); //===================================================================== // plot some histograms TCanvas output; // produce some plots output.Divide(3,2); // Show the matrix which connects input and output // There are overflow bins at the bottom, not shown in the plot // These contain the background shape. // The overflow bins to the left and right contain // events which are not reconstructed. These are necessary for proper MC // normalisation output.cd(1); histMdetGenMC->Draw("BOX"); // draw generator-level distribution: // data (red) [for real data this is not available] // MC input (black) [with completely wrong peak position and shape] // unfolded data (blue) output.cd(2); histMunfold->SetLineColor(kBlue); histMunfold->Draw(); histMgenData->SetLineColor(kRed); histMgenData->Draw("SAME"); histMgenMC->Draw("SAME HIST"); // show detector level distributions // data (red) // MC (black) // unfolded data (blue) output.cd(3); histMdetFold->SetLineColor(kBlue); histMdetFold->Draw(); histMdetData->SetLineColor(kRed); histMdetData->Draw("SAME"); histMdetMC->Draw("SAME HIST"); // show correlation coefficients // all bins outside the peak are found to be highly correlated // But they are compatible with zero anyway // If the peak shape is fitted, // these correlations have to be taken into account, see example output.cd(4); histRhoi->Draw("BOX"); // show rhoi_max(tau) distribution output.cd(5); logTauX->Draw(); bestLogTauX->SetMarkerColor(kRed); bestLogTauX->Draw("*"); logTauXuser->SetMarkerColor(kBlue); logTauXuser->Draw("*"); output.cd(6); lCurve->Draw("AL"); bestLcurve->SetMarkerColor(kRed); lCurveUser->SetMarkerColor(kBlue); bestLcurve->Draw("*"); lCurveUser->Draw("*"); output.SaveAs("c1.ps"); return 0; } testUnfold2.C:1 testUnfold2.C:2 testUnfold2.C:3 testUnfold2.C:4 testUnfold2.C:5 testUnfold2.C:6 testUnfold2.C:7 testUnfold2.C:8 testUnfold2.C:9 testUnfold2.C:10 testUnfold2.C:11 testUnfold2.C:12 testUnfold2.C:13 testUnfold2.C:14 testUnfold2.C:15 testUnfold2.C:16 testUnfold2.C:17 testUnfold2.C:18 testUnfold2.C:19 testUnfold2.C:20 testUnfold2.C:21 testUnfold2.C:22 testUnfold2.C:23 testUnfold2.C:24 testUnfold2.C:25 testUnfold2.C:26 testUnfold2.C:27 testUnfold2.C:28 testUnfold2.C:29 testUnfold2.C:30 testUnfold2.C:31 testUnfold2.C:32 testUnfold2.C:33 testUnfold2.C:34 testUnfold2.C:35 testUnfold2.C:36 testUnfold2.C:37 testUnfold2.C:38 testUnfold2.C:39 testUnfold2.C:40 testUnfold2.C:41 testUnfold2.C:42 testUnfold2.C:43 testUnfold2.C:44 testUnfold2.C:45 testUnfold2.C:46 testUnfold2.C:47 testUnfold2.C:48 testUnfold2.C:49 testUnfold2.C:50 testUnfold2.C:51 testUnfold2.C:52 testUnfold2.C:53 testUnfold2.C:54 testUnfold2.C:55 testUnfold2.C:56 testUnfold2.C:57 testUnfold2.C:58 testUnfold2.C:59 testUnfold2.C:60 testUnfold2.C:61 testUnfold2.C:62 testUnfold2.C:63 testUnfold2.C:64 testUnfold2.C:65 testUnfold2.C:66 testUnfold2.C:67 testUnfold2.C:68 testUnfold2.C:69 testUnfold2.C:70 testUnfold2.C:71 testUnfold2.C:72 testUnfold2.C:73 testUnfold2.C:74 testUnfold2.C:75 testUnfold2.C:76 testUnfold2.C:77 testUnfold2.C:78 testUnfold2.C:79 testUnfold2.C:80 testUnfold2.C:81 testUnfold2.C:82 testUnfold2.C:83 testUnfold2.C:84 testUnfold2.C:85 testUnfold2.C:86 testUnfold2.C:87 testUnfold2.C:88 testUnfold2.C:89 testUnfold2.C:90 testUnfold2.C:91 testUnfold2.C:92 testUnfold2.C:93 testUnfold2.C:94 testUnfold2.C:95 testUnfold2.C:96 testUnfold2.C:97 testUnfold2.C:98 testUnfold2.C:99 testUnfold2.C:100 testUnfold2.C:101 testUnfold2.C:102 testUnfold2.C:103 testUnfold2.C:104 testUnfold2.C:105 testUnfold2.C:106 testUnfold2.C:107 testUnfold2.C:108 testUnfold2.C:109 testUnfold2.C:110 testUnfold2.C:111 testUnfold2.C:112 testUnfold2.C:113 testUnfold2.C:114 testUnfold2.C:115 testUnfold2.C:116 testUnfold2.C:117 testUnfold2.C:118 testUnfold2.C:119 testUnfold2.C:120 testUnfold2.C:121 testUnfold2.C:122 testUnfold2.C:123 testUnfold2.C:124 testUnfold2.C:125 testUnfold2.C:126 testUnfold2.C:127 testUnfold2.C:128 testUnfold2.C:129 testUnfold2.C:130 testUnfold2.C:131 testUnfold2.C:132 testUnfold2.C:133 testUnfold2.C:134 testUnfold2.C:135 testUnfold2.C:136 testUnfold2.C:137 testUnfold2.C:138 testUnfold2.C:139 testUnfold2.C:140 testUnfold2.C:141 testUnfold2.C:142 testUnfold2.C:143 testUnfold2.C:144 testUnfold2.C:145 testUnfold2.C:146 testUnfold2.C:147 testUnfold2.C:148 testUnfold2.C:149 testUnfold2.C:150 testUnfold2.C:151 testUnfold2.C:152 testUnfold2.C:153 testUnfold2.C:154 testUnfold2.C:155 testUnfold2.C:156 testUnfold2.C:157 testUnfold2.C:158 testUnfold2.C:159 testUnfold2.C:160 testUnfold2.C:161 testUnfold2.C:162 testUnfold2.C:163 testUnfold2.C:164 testUnfold2.C:165 testUnfold2.C:166 testUnfold2.C:167 testUnfold2.C:168 testUnfold2.C:169 testUnfold2.C:170 testUnfold2.C:171 testUnfold2.C:172 testUnfold2.C:173 testUnfold2.C:174 testUnfold2.C:175 testUnfold2.C:176 testUnfold2.C:177 testUnfold2.C:178 testUnfold2.C:179 testUnfold2.C:180 testUnfold2.C:181 testUnfold2.C:182 testUnfold2.C:183 testUnfold2.C:184 testUnfold2.C:185 testUnfold2.C:186 testUnfold2.C:187 testUnfold2.C:188 testUnfold2.C:189 testUnfold2.C:190 testUnfold2.C:191 testUnfold2.C:192 testUnfold2.C:193 testUnfold2.C:194 testUnfold2.C:195 testUnfold2.C:196 testUnfold2.C:197 testUnfold2.C:198 testUnfold2.C:199 testUnfold2.C:200 testUnfold2.C:201 testUnfold2.C:202 testUnfold2.C:203 testUnfold2.C:204 testUnfold2.C:205 testUnfold2.C:206 testUnfold2.C:207 testUnfold2.C:208 testUnfold2.C:209 testUnfold2.C:210 testUnfold2.C:211 testUnfold2.C:212 testUnfold2.C:213 testUnfold2.C:214 testUnfold2.C:215 testUnfold2.C:216 testUnfold2.C:217 testUnfold2.C:218 testUnfold2.C:219 testUnfold2.C:220 testUnfold2.C:221 testUnfold2.C:222 testUnfold2.C:223 testUnfold2.C:224 testUnfold2.C:225 testUnfold2.C:226 testUnfold2.C:227 testUnfold2.C:228 testUnfold2.C:229 testUnfold2.C:230 testUnfold2.C:231 testUnfold2.C:232 testUnfold2.C:233 testUnfold2.C:234 testUnfold2.C:235 testUnfold2.C:236 testUnfold2.C:237 testUnfold2.C:238 testUnfold2.C:239 testUnfold2.C:240 testUnfold2.C:241 testUnfold2.C:242 testUnfold2.C:243 testUnfold2.C:244 testUnfold2.C:245 testUnfold2.C:246 testUnfold2.C:247 testUnfold2.C:248 testUnfold2.C:249 testUnfold2.C:250 testUnfold2.C:251 testUnfold2.C:252 testUnfold2.C:253 testUnfold2.C:254 testUnfold2.C:255 testUnfold2.C:256 testUnfold2.C:257 testUnfold2.C:258 testUnfold2.C:259 testUnfold2.C:260 testUnfold2.C:261 testUnfold2.C:262 testUnfold2.C:263 testUnfold2.C:264 testUnfold2.C:265 testUnfold2.C:266 testUnfold2.C:267 testUnfold2.C:268 testUnfold2.C:269 testUnfold2.C:270 testUnfold2.C:271 testUnfold2.C:272 testUnfold2.C:273 testUnfold2.C:274 testUnfold2.C:275 testUnfold2.C:276 testUnfold2.C:277 testUnfold2.C:278 testUnfold2.C:279 testUnfold2.C:280 testUnfold2.C:281 testUnfold2.C:282 testUnfold2.C:283 testUnfold2.C:284 testUnfold2.C:285 testUnfold2.C:286 testUnfold2.C:287 testUnfold2.C:288 testUnfold2.C:289 testUnfold2.C:290 testUnfold2.C:291 testUnfold2.C:292 testUnfold2.C:293 testUnfold2.C:294 testUnfold2.C:295 testUnfold2.C:296 testUnfold2.C:297 testUnfold2.C:298 testUnfold2.C:299 testUnfold2.C:300 testUnfold2.C:301 testUnfold2.C:302 testUnfold2.C:303 testUnfold2.C:304 testUnfold2.C:305 testUnfold2.C:306 testUnfold2.C:307 testUnfold2.C:308 testUnfold2.C:309 testUnfold2.C:310 testUnfold2.C:311 testUnfold2.C:312 testUnfold2.C:313 testUnfold2.C:314 testUnfold2.C:315 testUnfold2.C:316 testUnfold2.C:317 testUnfold2.C:318 testUnfold2.C:319 testUnfold2.C:320 testUnfold2.C:321 testUnfold2.C:322 testUnfold2.C:323 testUnfold2.C:324 testUnfold2.C:325 testUnfold2.C:326 testUnfold2.C:327 testUnfold2.C:328 testUnfold2.C:329 testUnfold2.C:330 testUnfold2.C:331 testUnfold2.C:332 testUnfold2.C:333 testUnfold2.C:334 testUnfold2.C:335 testUnfold2.C:336 testUnfold2.C:337 testUnfold2.C:338 testUnfold2.C:339 testUnfold2.C:340 testUnfold2.C:341 testUnfold2.C:342 testUnfold2.C:343 testUnfold2.C:344 testUnfold2.C:345 testUnfold2.C:346 testUnfold2.C:347 testUnfold2.C:348 testUnfold2.C:349 testUnfold2.C:350 testUnfold2.C:351 testUnfold2.C:352 testUnfold2.C:353 testUnfold2.C:354 testUnfold2.C:355 testUnfold2.C:356 testUnfold2.C:357 testUnfold2.C:358 testUnfold2.C:359 testUnfold2.C:360 testUnfold2.C:361 testUnfold2.C:362 testUnfold2.C:363 testUnfold2.C:364 testUnfold2.C:365 testUnfold2.C:366 testUnfold2.C:367 testUnfold2.C:368 testUnfold2.C:369 testUnfold2.C:370 testUnfold2.C:371 testUnfold2.C:372 testUnfold2.C:373 testUnfold2.C:374 testUnfold2.C:375 testUnfold2.C:376 testUnfold2.C:377 testUnfold2.C:378 testUnfold2.C:379 testUnfold2.C:380 testUnfold2.C:381 testUnfold2.C:382 testUnfold2.C:383 testUnfold2.C:384 testUnfold2.C:385 testUnfold2.C:386 testUnfold2.C:387 testUnfold2.C:388 testUnfold2.C:389 testUnfold2.C:390 testUnfold2.C:391 testUnfold2.C:392 testUnfold2.C:393 testUnfold2.C:394 testUnfold2.C:395 testUnfold2.C:396 testUnfold2.C:397 testUnfold2.C:398 testUnfold2.C:399 testUnfold2.C:400 testUnfold2.C:401 testUnfold2.C:402 testUnfold2.C:403 testUnfold2.C:404 testUnfold2.C:405 testUnfold2.C:406 testUnfold2.C:407 testUnfold2.C:408 testUnfold2.C:409 testUnfold2.C:410 testUnfold2.C:411 testUnfold2.C:412 testUnfold2.C:413 testUnfold2.C:414 testUnfold2.C:415 testUnfold2.C:416 testUnfold2.C:417 testUnfold2.C:418 testUnfold2.C:419 testUnfold2.C:420 testUnfold2.C:421 testUnfold2.C:422 testUnfold2.C:423 testUnfold2.C:424 testUnfold2.C:425 testUnfold2.C:426 testUnfold2.C:427 testUnfold2.C:428 testUnfold2.C:429 testUnfold2.C:430 testUnfold2.C:431 testUnfold2.C:432 testUnfold2.C:433 testUnfold2.C:434 testUnfold2.C:435 testUnfold2.C:436 testUnfold2.C:437 testUnfold2.C:438 testUnfold2.C:439 testUnfold2.C:440 testUnfold2.C:441 testUnfold2.C:442 testUnfold2.C:443 testUnfold2.C:444 testUnfold2.C:445 testUnfold2.C:446 testUnfold2.C:447 testUnfold2.C:448 testUnfold2.C:449 testUnfold2.C:450 testUnfold2.C:451 testUnfold2.C:452 testUnfold2.C:453 testUnfold2.C:454 testUnfold2.C:455 testUnfold2.C:456 testUnfold2.C:457 testUnfold2.C:458 testUnfold2.C:459 testUnfold2.C:460 testUnfold2.C:461 testUnfold2.C:462 testUnfold2.C:463 testUnfold2.C:464 testUnfold2.C:465 testUnfold2.C:466 testUnfold2.C:467 testUnfold2.C:468 testUnfold2.C:469 testUnfold2.C:470 testUnfold2.C:471 testUnfold2.C:472 testUnfold2.C:473 testUnfold2.C:474 |
|