// @(#)root/spectrum:$Id: TSpectrum2Transform.cxx 20882 2007-11-19 11:31:26Z rdm $
// Author: Miroslav Morhac   25/09/06

//__________________________________________________________________________
//   THIS CLASS CONTAINS 2-DIMENSIONAL ORTHOGONAL TRANSFORM  FUNCTIONS.    //
//                                                                         //
//   These functions were written by:                                      //
//   Miroslav Morhac                                                       //
//   Institute of Physics                                                  //
//   Slovak Academy of Sciences                                            //
//   Dubravska cesta 9, 842 28 BRATISLAVA                                  //
//   SLOVAKIA                                                              //
//                                                                         //
//   email:fyzimiro@savba.sk,    fax:+421 7 54772479                       //
//                                                                         //
//  The original code in C has been repackaged as a C++ class by R.Brun    //
//                                                                         //
//  The algorithms in this class have been published in the following      //
//  references:                                                            //
//                                                                         //
//  [1] C.V. Hampton, B. Lian, Wm. C. McHarris: Fast-Fourier-transform     //
//      spectral enhancement techniques for gamma-ray spectroscopy.NIM A353//
//      (1994) 280-284.                                                    //
//  [2] Morhac M., Matousek V., New adaptive Cosine-Walsh  transform and   //
//      its application to nuclear data compression, IEEE Transactions on  //
//      Signal Processing 48 (2000) 2693.                                  //  
//  [3] Morhac M., Matousek V., Data compression using new fast adaptive   //
//      Cosine-Haar transforms, Digital Signal Processing 8 (1998) 63.     //
//  [4] Morhac M., Matousek V.: Multidimensional nuclear data compression  //
//      using fast adaptive Walsh-Haar transform. Acta Physica Slovaca 51  //
//     (2001) 307.                                                         //
//____________________________________________________________________________

#include "TSpectrum2Transform.h"
#include "TMath.h"

ClassImp(TSpectrum2Transform)  
    
//____________________________________________________________________________    
TSpectrum2Transform::TSpectrum2Transform() 
{
   //default constructor
}

//____________________________________________________________________________    
TSpectrum2Transform::TSpectrum2Transform(Int_t sizeX, Int_t sizeY) :TObject()
{
//the constructor creates TSpectrum2Transform object. Its sizes must be > than zero and must be power of 2.
//It sets default transform type to be Cosine transform. Transform parameters can be changed using setter functions.   
   Int_t j1, j2, n;
   if (sizeX <= 0 || sizeY <= 0){
      Error ("TSpectrumTransform","Invalid length, must be > than 0");
      return;
   }    
   j1 = 0;
   n = 1;
   for (; n < sizeX;) {
      j1 += 1;
      n = n * 2;
   }
   if (n != sizeX){
      Error ("TSpectrumTransform","Invalid length, must be power of 2");
      return;   
   }
   j2 = 0;
   n = 1;
   for (; n < sizeY;) {
      j2 += 1;
      n = n * 2;
   }
   if (n != sizeY){
      Error ("TSpectrumTransform","Invalid length, must be power of 2");
      return;   
   }   
   fSizeX = sizeX, fSizeY = sizeY;
   fTransformType = kTransformCos;
   fDegree = 0;
   fDirection = kTransformForward;
   fXmin = sizeX/4;
   fXmax = sizeX-1;
   fYmin = sizeY/4;
   fYmax = sizeY-1;   
   fFilterCoeff=0;
   fEnhanceCoeff=0.5;
}


//______________________________________________________________________________
TSpectrum2Transform::~TSpectrum2Transform() 
{
   //destructor
}


//////////AUXILIARY FUNCTIONS FOR TRANSFORM BASED FUNCTIONS////////////////////////
//_____________________________________________________________________________
void TSpectrum2Transform::Haar(Float_t *working_space, Int_t num, Int_t direction) 
{
//////////////////////////////////////////////////////////////////////////////////
//   AUXILIARY FUNCION                                                          //
//                                                                              //
//   This funcion calculates Haar transform of a part of data                   //
//      Function parameters:                                                    //
//              -working_space-pointer to vector of transformed data            //
//              -num-length of processed data                                   //
//              -direction-forward or inverse transform                         //
//                                                                              //
//////////////////////////////////////////////////////////////////////////////////
   Int_t i, ii, li, l2, l3, j, jj, jj1, lj, iter, m, jmin, jmax;
   Double_t a, b, c, wlk;
   Float_t val;
   for (i = 0; i < num; i++)
      working_space[i + num] = 0;
   i = num;
   iter = 0;
   for (; i > 1;) {
      iter += 1;
      i = i / 2;
   }
   if (direction == kTransformForward) {
      for (m = 1; m <= iter; m++) {
         li = iter + 1 - m;
         l2 = (Int_t) TMath::Power(2, li - 1);
         for (i = 0; i < (2 * l2); i++) {
            working_space[num + i] = working_space[i];
         }
         for (j = 0; j < l2; j++) {
            l3 = l2 + j;
            jj = 2 * j;
            val = working_space[jj + num] + working_space[jj + 1 + num];
            working_space[j] = val;
            val = working_space[jj + num] - working_space[jj + 1 + num];
            working_space[l3] = val;
         }
      }
   }
   val = working_space[0];
   val = val / TMath::Sqrt(TMath::Power(2, iter));
   working_space[0] = val;
   val = working_space[1];
   val = val / TMath::Sqrt(TMath::Power(2, iter));
   working_space[1] = val;
   for (ii = 2; ii <= iter; ii++) {
      i = ii - 1;
      wlk = 1 / TMath::Sqrt(TMath::Power(2, iter - i));
      jmin = (Int_t) TMath::Power(2, i);
      jmax = (Int_t) TMath::Power(2, ii) - 1;
      for (j = jmin; j <= jmax; j++) {
         val = working_space[j];
         a = val;
         a = a * wlk;
         val = a;
         working_space[j] = val;
      }
   }
   if (direction == kTransformInverse) {
      for (m = 1; m <= iter; m++) {
         a = 2;
         b = m - 1;
         c = TMath::Power(a, b);
         li = (Int_t) c;
         for (i = 0; i < (2 * li); i++) {
            working_space[i + num] = working_space[i];
         }
         for (j = 0; j < li; j++) {
            lj = li + j;
            jj = 2 * (j + 1) - 1;
            jj1 = jj - 1;
            val = working_space[j + num] - working_space[lj + num];
            working_space[jj] = val;
            val = working_space[j + num] + working_space[lj + num];
            working_space[jj1] = val;
         }
      }
   }
   return;
}

//_____________________________________________________________________________
void TSpectrum2Transform::Walsh(Float_t *working_space, Int_t num) 
{
//////////////////////////////////////////////////////////////////////////////////
//   AUXILIARY FUNCION                                                          //
//                                                                              //
//   This funcion calculates Walsh transform of a part of data                  //
//      Function parameters:                                                    //
//              -working_space-pointer to vector of transformed data            //
//              -num-length of processed data                                   //
//                                                                              //
//////////////////////////////////////////////////////////////////////////////////
   Int_t i, m, nump = 1, mnum, mnum2, mp, ib, mp2, mnum21, iba, iter;
   Double_t a;
   Float_t val1, val2;
   for (i = 0; i < num; i++)
      working_space[i + num] = 0;
   i = num;
   iter = 0;
   for (; i > 1;) {
      iter += 1;
      i = i / 2;
   }
   for (m = 1; m <= iter; m++) {
      if (m == 1)
         nump = 1;
      
      else
         nump = nump * 2;
      mnum = num / nump;
      mnum2 = mnum / 2;
      for (mp = 0; mp < nump; mp++) {
         ib = mp * mnum;
         for (mp2 = 0; mp2 < mnum2; mp2++) {
            mnum21 = mnum2 + mp2 + ib;
            iba = ib + mp2;
            val1 = working_space[iba];
            val2 = working_space[mnum21];
            working_space[iba + num] = val1 + val2;
            working_space[mnum21 + num] = val1 - val2;
         }
      }
      for (i = 0; i < num; i++) {
         working_space[i] = working_space[i + num];
      }
   }
   a = num;
   a = TMath::Sqrt(a);
   val2 = a;
   for (i = 0; i < num; i++) {
      val1 = working_space[i];
      val1 = val1 / val2;
      working_space[i] = val1;
   }
   return;
}

//_____________________________________________________________________________
void TSpectrum2Transform::BitReverse(Float_t *working_space, Int_t num) 
{
//////////////////////////////////////////////////////////////////////////////////
//   AUXILIARY FUNCION                                                          //
//                                                                              //
//   This funcion carries out bir-reverse reordering of data                    //
//      Function parameters:                                                    //
//              -working_space-pointer to vector of processed data              //
//              -num-length of processed data                                   //
//                                                                              //
//////////////////////////////////////////////////////////////////////////////////
   Int_t ipower[26];
   Int_t i, ib, il, ibd, ip, ifac, i1;
   for (i = 0; i < num; i++) {
      working_space[i + num] = working_space[i];
   }
   for (i = 1; i <= num; i++) {
      ib = i - 1;
      il = 1;
      lab9: ibd = ib / 2;
      ipower[il - 1] = 1;
      if (ib == (ibd * 2))
         ipower[il - 1] = 0;
      if (ibd == 0)
         goto lab10;
      ib = ibd;
      il = il + 1;
      goto lab9;
      lab10: ip = 1;
      ifac = num;
      for (i1 = 1; i1 <= il; i1++) {
         ifac = ifac / 2;
         ip = ip + ifac * ipower[i1 - 1];
      }
      working_space[ip - 1] = working_space[i - 1 + num];
   }
   return;
}

//_____________________________________________________________________________
void TSpectrum2Transform::Fourier(Float_t *working_space, Int_t num, Int_t hartley,
                           Int_t direction, Int_t zt_clear) 
{
//////////////////////////////////////////////////////////////////////////////////
//   AUXILIARY FUNCION                                                          //
//                                                                              //
//   This funcion calculates Fourier based transform of a part of data          //
//      Function parameters:                                                    //
//              -working_space-pointer to vector of transformed data            //
//              -num-length of processed data                                   //
//              -hartley-1 if it is Hartley transform, 0 othewise               //
//              -direction-forward or inverse transform                         //
//                                                                              //
//////////////////////////////////////////////////////////////////////////////////
   Int_t nxp2, nxp, i, j, k, m, iter, mxp, j1, j2, n1, n2, it;
   Double_t a, b, c, d, sign, wpwr, arg, wr, wi, tr, ti, pi =
       3.14159265358979323846;
   Float_t val1, val2, val3, val4;
   if (direction == kTransformForward && zt_clear == 0) {
      for (i = 0; i < num; i++)
         working_space[i + num] = 0;
   }
   i = num;
   iter = 0;
   for (; i > 1;) {
      iter += 1;
      i = i / 2;
   }
   sign = -1;
   if (direction == kTransformInverse)
      sign = 1;
   nxp2 = num;
   for (it = 1; it <= iter; it++) {
      nxp = nxp2;
      nxp2 = nxp / 2;
      a = nxp2;
      wpwr = pi / a;
      for (m = 1; m <= nxp2; m++) {
         a = m - 1;
         arg = a * wpwr;
         wr = TMath::Cos(arg);
         wi = sign * TMath::Sin(arg);
         for (mxp = nxp; mxp <= num; mxp += nxp) {
            j1 = mxp - nxp + m;
            j2 = j1 + nxp2;
            val1 = working_space[j1 - 1];
            val2 = working_space[j2 - 1];
            val3 = working_space[j1 - 1 + num];
            val4 = working_space[j2 - 1 + num];
            a = val1;
            b = val2;
            c = val3;
            d = val4;
            tr = a - b;
            ti = c - d;
            a = a + b;
            val1 = a;
            working_space[j1 - 1] = val1;
            c = c + d;
            val1 = c;
            working_space[j1 - 1 + num] = val1;
            a = tr * wr - ti * wi;
            val1 = a;
            working_space[j2 - 1] = val1;
            a = ti * wr + tr * wi;
            val1 = a;
            working_space[j2 - 1 + num] = val1;
         }
      }
   }
   n2 = num / 2;
   n1 = num - 1;
   j = 1;
   for (i = 1; i <= n1; i++) {
      if (i >= j)
         goto lab55;
      val1 = working_space[j - 1];
      val2 = working_space[j - 1 + num];
      val3 = working_space[i - 1];
      working_space[j - 1] = val3;
      working_space[j - 1 + num] = working_space[i - 1 + num];
      working_space[i - 1] = val1;
      working_space[i - 1 + num] = val2;
      lab55: k = n2;
      lab60: if (k >= j) goto lab65;
      j = j - k;
      k = k / 2;
      goto lab60;
      lab65: j = j + k;
   }
   a = num;
   a = TMath::Sqrt(a);
   for (i = 0; i < num; i++) {
      if (hartley == 0) {
         val1 = working_space[i];
         b = val1;
         b = b / a;
         val1 = b;
         working_space[i] = val1;
         b = working_space[i + num];
         b = b / a;
         working_space[i + num] = b;
      }
      
      else {
         b = working_space[i];
         c = working_space[i + num];
         b = (b + c) / a;
         working_space[i] = b;
         working_space[i + num] = 0;
      }
   }
   if (hartley == 1 && direction == kTransformInverse) {
      for (i = 1; i < num; i++)
         working_space[num - i + num] = working_space[i];
      working_space[0 + num] = working_space[0];
      for (i = 0; i < num; i++) {
         working_space[i] = working_space[i + num];
         working_space[i + num] = 0;
      }
   }
   return;
}

//_____________________________________________________________________________
void TSpectrum2Transform::BitReverseHaar(Float_t *working_space, Int_t shift, Int_t num,
                                  Int_t start) 
{
//////////////////////////////////////////////////////////////////////////////////
//   AUXILIARY FUNCION                                                          //
//                                                                              //
//   This funcion carries out bir-reverse reordering for Haar transform         //
//      Function parameters:                                                    //
//              -working_space-pointer to vector of processed data              //
//              -shift-shift of position of processing                          //
//              -start-initial position of processed data                       //
//              -num-length of processed data                                   //
//                                                                              //
//////////////////////////////////////////////////////////////////////////////////
   Int_t ipower[26];
   Int_t i, ib, il, ibd, ip, ifac, i1;
   for (i = 0; i < num; i++) {
      working_space[i + shift + start] = working_space[i + start];
      working_space[i + shift + start + 2 * shift] =
          working_space[i + start + 2 * shift];
   }
   for (i = 1; i <= num; i++) {
      ib = i - 1;
      il = 1;
      lab9:  ibd = ib / 2;
      ipower[il - 1] = 1;
      if (ib == (ibd * 2))
         ipower[il - 1] = 0;
      if (ibd == 0)
         goto lab10;
      ib = ibd;
      il = il + 1;
      goto lab9;
      lab10:  ip = 1;
      ifac = num;
      for (i1 = 1; i1 <= il; i1++) {
         ifac = ifac / 2;
         ip = ip + ifac * ipower[i1 - 1];
      }
      working_space[ip - 1 + start] =
          working_space[i - 1 + shift + start];
      working_space[ip - 1 + start + 2 * shift] =
          working_space[i - 1 + shift + start + 2 * shift];
   }
   return;
}

//_____________________________________________________________________________
Int_t TSpectrum2Transform::GeneralExe(Float_t *working_space, Int_t zt_clear, Int_t num,
                             Int_t degree, Int_t type) 
{
//////////////////////////////////////////////////////////////////////////////////
//   AUXILIARY FUNCION                                                          //
//                                                                              //
//   This funcion calculates generalized (mixed) transforms of different degrees//
//      Function parameters:                                                    //
//              -working_space-pointer to vector of transformed data            //
//              -zt_clear-flag to clear imaginary data before staring           //
//              -num-length of processed data                                   //
//              -degree-degree of transform (see manual)                        //
//              -type-type of mixed transform (see manual)                      //
//                                                                              //
//////////////////////////////////////////////////////////////////////////////////
   Int_t i, j, k, m, nump, mnum, mnum2, mp, ib, mp2, mnum21, iba, iter,
       mp2step, mppom, ring;
   Double_t a, b, c, d, wpwr, arg, wr, wi, tr, ti, pi =
       3.14159265358979323846;
   Float_t val1, val2, val3, val4, a0oldr = 0, b0oldr = 0, a0r, b0r;
   if (zt_clear == 0) {
      for (i = 0; i < num; i++)
         working_space[i + 2 * num] = 0;
   }
   i = num;
   iter = 0;
   for (; i > 1;) {
      iter += 1;
      i = i / 2;
   }
   a = num;
   wpwr = 2.0 * pi / a;
   nump = num;
   mp2step = 1;
   ring = num;
   for (i = 0; i < iter - degree; i++)
      ring = ring / 2;
   for (m = 1; m <= iter; m++) {
      nump = nump / 2;
      mnum = num / nump;
      mnum2 = mnum / 2;
      if (m > degree
           && (type == kTransformFourierHaar
               || type == kTransformWalshHaar
               || type == kTransformCosHaar
               || type == kTransformSinHaar))
         mp2step *= 2;
      if (ring > 1)
         ring = ring / 2;
      for (mp = 0; mp < nump; mp++) {
         if (type != kTransformWalshHaar) {
            mppom = mp;
            mppom = mppom % ring;
            a = 0;
            j = 1;
            k = num / 4;
            for (i = 0; i < (iter - 1); i++) {
               if ((mppom & j) != 0)
                  a = a + k;
               j = j * 2;
               k = k / 2;
            }
            arg = a * wpwr;
            wr = TMath::Cos(arg);
            wi = TMath::Sin(arg);
         }
         
         else {
            wr = 1;
            wi = 0;
         }
         ib = mp * mnum;
         for (mp2 = 0; mp2 < mnum2; mp2++) {
            mnum21 = mnum2 + mp2 + ib;
            iba = ib + mp2;
            if (mp2 % mp2step == 0) {
               a0r = a0oldr;
               b0r = b0oldr;
               a0r = 1 / TMath::Sqrt(2.0);
               b0r = 1 / TMath::Sqrt(2.0);
            }
            
            else {
               a0r = 1;
               b0r = 0;
            }
            val1 = working_space[iba];
            val2 = working_space[mnum21];
            val3 = working_space[iba + 2 * num];
            val4 = working_space[mnum21 + 2 * num];
            a = val1;
            b = val2;
            c = val3;
            d = val4;
            tr = a * a0r + b * b0r;
            val1 = tr;
            working_space[num + iba] = val1;
            ti = c * a0r + d * b0r;
            val1 = ti;
            working_space[num + iba + 2 * num] = val1;
            tr =
                a * b0r * wr - c * b0r * wi - b * a0r * wr + d * a0r * wi;
            val1 = tr;
            working_space[num + mnum21] = val1;
            ti =
                c * b0r * wr + a * b0r * wi - d * a0r * wr - b * a0r * wi;
            val1 = ti;
            working_space[num + mnum21 + 2 * num] = val1;
         }
      }
      for (i = 0; i < num; i++) {
         val1 = working_space[num + i];
         working_space[i] = val1;
         val1 = working_space[num + i + 2 * num];
         working_space[i + 2 * num] = val1;
      }
   }
   return (0);
}

//_____________________________________________________________________________
Int_t TSpectrum2Transform::GeneralInv(Float_t *working_space, Int_t num, Int_t degree,
                             Int_t type) 
{
//////////////////////////////////////////////////////////////////////////////////
//   AUXILIARY FUNCION                                                          //
//                                                                              //
//   This funcion calculates inverse generalized (mixed) transforms             //
//      Function parameters:                                                    //
//              -working_space-pointer to vector of transformed data            //
//              -num-length of processed data                                   //
//              -degree-degree of transform (see manual)                        //
//              -type-type of mixed transform (see manual)                      //
//                                                                              //
//////////////////////////////////////////////////////////////////////////////////
   Int_t i, j, k, m, nump =
       1, mnum, mnum2, mp, ib, mp2, mnum21, iba, iter, mp2step, mppom,
       ring;
   Double_t a, b, c, d, wpwr, arg, wr, wi, tr, ti, pi =
       3.14159265358979323846;
   Float_t val1, val2, val3, val4, a0oldr = 0, b0oldr = 0, a0r, b0r;
   i = num;
   iter = 0;
   for (; i > 1;) {
      iter += 1;
      i = i / 2;
   }
   a = num;
   wpwr = 2.0 * pi / a;
   mp2step = 1;
   if (type == kTransformFourierHaar || type == kTransformWalshHaar
        || type == kTransformCosHaar || type == kTransformSinHaar) {
      for (i = 0; i < iter - degree; i++)
         mp2step *= 2;
   }
   ring = 1;
   for (m = 1; m <= iter; m++) {
      if (m == 1)
         nump = 1;
      
      else
         nump = nump * 2;
      mnum = num / nump;
      mnum2 = mnum / 2;
      if (m > iter - degree + 1)
         ring *= 2;
      for (mp = nump - 1; mp >= 0; mp--) {
         if (type != kTransformWalshHaar) {
            mppom = mp;
            mppom = mppom % ring;
            a = 0;
            j = 1;
            k = num / 4;
            for (i = 0; i < (iter - 1); i++) {
               if ((mppom & j) != 0)
                  a = a + k;
               j = j * 2;
               k = k / 2;
            }
            arg = a * wpwr;
            wr = TMath::Cos(arg);
            wi = TMath::Sin(arg);
         }
         
         else {
            wr = 1;
            wi = 0;
         }
         ib = mp * mnum;
         for (mp2 = 0; mp2 < mnum2; mp2++) {
            mnum21 = mnum2 + mp2 + ib;
            iba = ib + mp2;
            if (mp2 % mp2step == 0) {
               a0r = a0oldr;
               b0r = b0oldr;
               a0r = 1 / TMath::Sqrt(2.0);
               b0r = 1 / TMath::Sqrt(2.0);
            }
            
            else {
               a0r = 1;
               b0r = 0;
            }
            val1 = working_space[iba];
            val2 = working_space[mnum21];
            val3 = working_space[iba + 2 * num];
            val4 = working_space[mnum21 + 2 * num];
            a = val1;
            b = val2;
            c = val3;
            d = val4;
            tr = a * a0r + b * wr * b0r + d * wi * b0r;
            val1 = tr;
            working_space[num + iba] = val1;
            ti = c * a0r + d * wr * b0r - b * wi * b0r;
            val1 = ti;
            working_space[num + iba + 2 * num] = val1;
            tr = a * b0r - b * wr * a0r - d * wi * a0r;
            val1 = tr;
            working_space[num + mnum21] = val1;
            ti = c * b0r - d * wr * a0r + b * wi * a0r;
            val1 = ti;
            working_space[num + mnum21 + 2 * num] = val1;
         }
      }
      if (m <= iter - degree
           && (type == kTransformFourierHaar
               || type == kTransformWalshHaar
               || type == kTransformCosHaar
               || type == kTransformSinHaar))
         mp2step /= 2;
      for (i = 0; i < num; i++) {
         val1 = working_space[num + i];
         working_space[i] = val1;
         val1 = working_space[num + i + 2 * num];
         working_space[i + 2 * num] = val1;
      }
   }
   return (0);
}

//_____________________________________________________________________________
void TSpectrum2Transform::HaarWalsh2(Float_t **working_matrix,
                              Float_t *working_vector, Int_t numx, Int_t numy,
                              Int_t direction, Int_t type) 
{
//////////////////////////////////////////////////////////////////////////////////
//   AUXILIARY FUNCION                                                          //
//                                                                              //
//   This funcion calculates 2D Haar and Walsh transforms                       //
//      Function parameters:                                                    //
//              -working_matrix-pointer to matrix of transformed data           //
//              -working_vector-pointer to vector where the data are processed  //
//              -numx,numy-lengths of processed data                            //
//              -direction-forward or inverse                                   //
//              -type-type of transform (see manual)                            //
//                                                                              //
//////////////////////////////////////////////////////////////////////////////////
   Int_t i, j;
   if (direction == kTransformForward) {
      for (j = 0; j < numy; j++) {
         for (i = 0; i < numx; i++) {
            working_vector[i] = working_matrix[i][j];
         }
         switch (type) {
         case kTransformHaar:
            Haar(working_vector, numx, kTransformForward);
            break;
         case kTransformWalsh:
            Walsh(working_vector, numx);
            BitReverse(working_vector, numx);
            break;
         }
         for (i = 0; i < numx; i++) {
            working_matrix[i][j] = working_vector[i];
         }
      }
      for (i = 0; i < numx; i++) {
         for (j = 0; j < numy; j++) {
            working_vector[j] = working_matrix[i][j];
         }
         switch (type) {
         case kTransformHaar:
            Haar(working_vector, numy, kTransformForward);
            break;
         case kTransformWalsh:
            Walsh(working_vector, numy);
            BitReverse(working_vector, numy);
            break;
         }
         for (j = 0; j < numy; j++) {
            working_matrix[i][j] = working_vector[j];
         }
      }
   }
   
   else if (direction == kTransformInverse) {
      for (i = 0; i < numx; i++) {
         for (j = 0; j < numy; j++) {
            working_vector[j] = working_matrix[i][j];
         }
         switch (type) {
         case kTransformHaar:
            Haar(working_vector, numy, kTransformInverse);
            break;
         case kTransformWalsh:
            BitReverse(working_vector, numy);
            Walsh(working_vector, numy);
            break;
         }
         for (j = 0; j < numy; j++) {
            working_matrix[i][j] = working_vector[j];
         }
      }
      for (j = 0; j < numy; j++) {
         for (i = 0; i < numx; i++) {
            working_vector[i] = working_matrix[i][j];
         }
         switch (type) {
         case kTransformHaar:
            Haar(working_vector, numx, kTransformInverse);
            break;
         case kTransformWalsh:
            BitReverse(working_vector, numx);
            Walsh(working_vector, numx);
            break;
         }
         for (i = 0; i < numx; i++) {
            working_matrix[i][j] = working_vector[i];
         }
      }
   }
   return;
}

//_____________________________________________________________________________
void TSpectrum2Transform::FourCos2(Float_t **working_matrix, Float_t *working_vector,
                            Int_t numx, Int_t numy, Int_t direction, Int_t type) 
{
//////////////////////////////////////////////////////////////////////////////////
//   AUXILIARY FUNCION                                                          //
//                                                                              //
//   This funcion calculates 2D Fourier based transforms                        //
//      Function parameters:                                                    //
//              -working_matrix-pointer to matrix of transformed data           //
//              -working_vector-pointer to vector where the data are processed  //
//              -numx,numy-lengths of processed data                            //
//              -direction-forward or inverse                                   //
//              -type-type of transform (see manual)                            //
//                                                                              //
//////////////////////////////////////////////////////////////////////////////////
   Int_t i, j, iterx, itery, n, size;
   Double_t pi = 3.14159265358979323846;
   j = 0;
   n = 1;
   for (; n < numx;) {
      j += 1;
      n = n * 2;
   }
   j = 0;
   n = 1;
   for (; n < numy;) {
      j += 1;
      n = n * 2;
   }
   i = numx;
   iterx = 0;
   for (; i > 1;) {
      iterx += 1;
      i = i / 2;
   }
   i = numy;
   itery = 0;
   for (; i > 1;) {
      itery += 1;
      i = i / 2;
   }
   size = numx;
   if (size < numy)
      size = numy;
   if (direction == kTransformForward) {
      for (j = 0; j < numy; j++) {
         for (i = 0; i < numx; i++) {
            working_vector[i] = working_matrix[i][j];
         }
         switch (type) {
         case kTransformCos:
            for (i = 1; i <= numx; i++) {
               working_vector[2 * numx - i] = working_vector[i - 1];
            }
            Fourier(working_vector, 2 * numx, 0, kTransformForward, 0);
            for (i = 0; i < numx; i++) {
               working_vector[i] =
                   working_vector[i] / TMath::Cos(pi * i / (2 * numx));
            }
            working_vector[0] = working_vector[0] / TMath::Sqrt(2.);
            break;
         case kTransformSin:
            for (i = 1; i <= numx; i++) {
               working_vector[2 * numx - i] = -working_vector[i - 1];
            }
            Fourier(working_vector, 2 * numx, 0, kTransformForward, 0);
            for (i = 1; i < numx; i++) {
               working_vector[i - 1] =
                   working_vector[i] / TMath::Sin(pi * i / (2 * numx));
            }
            working_vector[numx - 1] =
                working_vector[numx] / TMath::Sqrt(2.);
            break;
         case kTransformFourier:
            Fourier(working_vector, numx, 0, kTransformForward, 0);
            break;
         case kTransformHartley:
            Fourier(working_vector, numx, 1, kTransformForward, 0);
            break;
         }
         for (i = 0; i < numx; i++) {
            working_matrix[i][j] = working_vector[i];
            if (type == kTransformFourier)
               working_matrix[i][j + numy] = working_vector[i + numx];
            
            else
               working_matrix[i][j + numy] = working_vector[i + 2 * numx];
         }
      }
      for (i = 0; i < numx; i++) {
         for (j = 0; j < numy; j++) {
            working_vector[j] = working_matrix[i][j];
            if (type == kTransformFourier)
               working_vector[j + numy] = working_matrix[i][j + numy];
            
            else
               working_vector[j + 2 * numy] = working_matrix[i][j + numy];
         }
         switch (type) {
         case kTransformCos:
            for (j = 1; j <= numy; j++) {
               working_vector[2 * numy - j] = working_vector[j - 1];
            }
            Fourier(working_vector, 2 * numy, 0, kTransformForward, 0);
            for (j = 0; j < numy; j++) {
               working_vector[j] =
                   working_vector[j] / TMath::Cos(pi * j / (2 * numy));
               working_vector[j + 2 * numy] = 0;
            }
            working_vector[0] = working_vector[0] / TMath::Sqrt(2.);
            break;
         case kTransformSin:
            for (j = 1; j <= numy; j++) {
               working_vector[2 * numy - j] = -working_vector[j - 1];
            }
            Fourier(working_vector, 2 * numy, 0, kTransformForward, 0);
            for (j = 1; j < numy; j++) {
               working_vector[j - 1] =
                   working_vector[j] / TMath::Sin(pi * j / (2 * numy));
               working_vector[j + numy] = 0;
            }
            working_vector[numy - 1] =
                working_vector[numy] / TMath::Sqrt(2.);
            working_vector[numy] = 0;
            break;
         case kTransformFourier:
            Fourier(working_vector, numy, 0, kTransformForward, 1);
            break;
         case kTransformHartley:
            Fourier(working_vector, numy, 1, kTransformForward, 0);
            break;
         }
         for (j = 0; j < numy; j++) {
            working_matrix[i][j] = working_vector[j];
            if (type == kTransformFourier)
               working_matrix[i][j + numy] = working_vector[j + numy];
            
            else
               working_matrix[i][j + numy] = working_vector[j + 2 * numy];
         }
      }
   }
   
   else if (direction == kTransformInverse) {
      for (i = 0; i < numx; i++) {
         for (j = 0; j < numy; j++) {
            working_vector[j] = working_matrix[i][j];
            if (type == kTransformFourier)
               working_vector[j + numy] = working_matrix[i][j + numy];
            
            else
               working_vector[j + 2 * numy] = working_matrix[i][j + numy];
         }
         switch (type) {
         case kTransformCos:
            working_vector[0] = working_vector[0] * TMath::Sqrt(2.);
            for (j = 0; j < numy; j++) {
               working_vector[j + 2 * numy] =
                   working_vector[j] * TMath::Sin(pi * j / (2 * numy));
               working_vector[j] =
                   working_vector[j] * TMath::Cos(pi * j / (2 * numy));
            }
            for (j = 1; j < numy; j++) {
               working_vector[2 * numy - j] = working_vector[j];
               working_vector[2 * numy - j + 2 * numy] =
                   -working_vector[j + 2 * numy];
            }
            working_vector[numy] = 0;
            working_vector[numy + 2 * numy] = 0;
            Fourier(working_vector, 2 * numy, 0, kTransformInverse, 1);
            break;
         case kTransformSin:
            working_vector[numy] =
                working_vector[numy - 1] * TMath::Sqrt(2.);
            for (j = numy - 1; j > 0; j--) {
               working_vector[j + 2 * numy] =
                   -working_vector[j -
                                   1] * TMath::Cos(pi * j / (2 * numy));
               working_vector[j] =
                   working_vector[j - 1] * TMath::Sin(pi * j / (2 * numy));
            }
            for (j = 1; j < numy; j++) {
               working_vector[2 * numy - j] = working_vector[j];
               working_vector[2 * numy - j + 2 * numy] =
                   -working_vector[j + 2 * numy];
            }
            working_vector[0] = 0;
            working_vector[0 + 2 * numy] = 0;
            working_vector[numy + 2 * numy] = 0;
            Fourier(working_vector, 2 * numy, 0, kTransformInverse, 1);
            break;
         case kTransformFourier:
            Fourier(working_vector, numy, 0, kTransformInverse, 1);
            break;
         case kTransformHartley:
            Fourier(working_vector, numy, 1, kTransformInverse, 1);
            break;
         }
         for (j = 0; j < numy; j++) {
            working_matrix[i][j] = working_vector[j];
            if (type == kTransformFourier)
               working_matrix[i][j + numy] = working_vector[j + numy];
            
            else
               working_matrix[i][j + numy] = working_vector[j + 2 * numy];
         }
      }
      for (j = 0; j < numy; j++) {
         for (i = 0; i < numx; i++) {
            working_vector[i] = working_matrix[i][j];
            if (type == kTransformFourier)
               working_vector[i + numx] = working_matrix[i][j + numy];
            
            else
               working_vector[i + 2 * numx] = working_matrix[i][j + numy];
         }
         switch (type) {
         case kTransformCos:
            working_vector[0] = working_vector[0] * TMath::Sqrt(2.);
            for (i = 0; i < numx; i++) {
               working_vector[i + 2 * numx] =
                   working_vector[i] * TMath::Sin(pi * i / (2 * numx));
               working_vector[i] =
                   working_vector[i] * TMath::Cos(pi * i / (2 * numx));
            }
            for (i = 1; i < numx; i++) {
               working_vector[2 * numx - i] = working_vector[i];
               working_vector[2 * numx - i + 2 * numx] =
                   -working_vector[i + 2 * numx];
            }
            working_vector[numx] = 0;
            working_vector[numx + 2 * numx] = 0;
            Fourier(working_vector, 2 * numx, 0, kTransformInverse, 1);
            break;
         case kTransformSin:
            working_vector[numx] =
                working_vector[numx - 1] * TMath::Sqrt(2.);
            for (i = numx - 1; i > 0; i--) {
               working_vector[i + 2 * numx] =
                   -working_vector[i -
                                   1] * TMath::Cos(pi * i / (2 * numx));
               working_vector[i] =
                   working_vector[i - 1] * TMath::Sin(pi * i / (2 * numx));
            }
            for (i = 1; i < numx; i++) {
               working_vector[2 * numx - i] = working_vector[i];
               working_vector[2 * numx - i + 2 * numx] =
                   -working_vector[i + 2 * numx];
            }
            working_vector[0] = 0;
            working_vector[0 + 2 * numx] = 0;
            working_vector[numx + 2 * numx] = 0;
            Fourier(working_vector, 2 * numx, 0, kTransformInverse, 1);
            break;
         case kTransformFourier:
            Fourier(working_vector, numx, 0, kTransformInverse, 1);
            break;
         case kTransformHartley:
            Fourier(working_vector, numx, 1, kTransformInverse, 1);
            break;
         }
         for (i = 0; i < numx; i++) {
            working_matrix[i][j] = working_vector[i];
         }
      }
   }
   return;
}

//_____________________________________________________________________________
void TSpectrum2Transform::General2(Float_t **working_matrix, Float_t *working_vector,
                            Int_t numx, Int_t numy, Int_t direction, Int_t type,
                            Int_t degree) 
{
//////////////////////////////////////////////////////////////////////////////////
//   AUXILIARY FUNCION                                                          //
//                                                                              //
//   This funcion calculates generalized (mixed) 2D transforms                  //
//      Function parameters:                                                    //
//              -working_matrix-pointer to matrix of transformed data           //
//              -working_vector-pointer to vector where the data are processed  //
//              -numx,numy-lengths of processed data                            //
//              -direction-forward or inverse                                   //
//              -type-type of transform (see manual)                            //
//              -degree-degree of transform (see manual)                        //
//                                                                              //
//////////////////////////////////////////////////////////////////////////////////
   Int_t i, j, jstup, kstup, l, m;
   Float_t val, valx, valz;
   Double_t a, b, pi = 3.14159265358979323846;
   if (direction == kTransformForward) {
      for (j = 0; j < numy; j++) {
         kstup = (Int_t) TMath::Power(2, degree);
         jstup = numx / kstup;
         for (i = 0; i < numx; i++) {
            val = working_matrix[i][j];
            if (type == kTransformCosWalsh
                 || type == kTransformCosHaar) {
               jstup = (Int_t) TMath::Power(2, degree) / 2;
               kstup = i / jstup;
               kstup = 2 * kstup * jstup;
               working_vector[kstup + i % jstup] = val;
               working_vector[kstup + 2 * jstup - 1 - i % jstup] = val;
            }
            
            else if (type == kTransformSinWalsh
                     || type == kTransformSinHaar) {
               jstup = (Int_t) TMath::Power(2, degree) / 2;
               kstup = i / jstup;
               kstup = 2 * kstup * jstup;
               working_vector[kstup + i % jstup] = val;
               working_vector[kstup + 2 * jstup - 1 - i % jstup] = -val;
            }
            
            else
               working_vector[i] = val;
         }
         switch (type) {
         case kTransformFourierWalsh:
         case kTransformFourierHaar:
         case kTransformWalshHaar:
            GeneralExe(working_vector, 0, numx, degree, type);
            for (i = 0; i < jstup; i++)
               BitReverseHaar(working_vector, numx, kstup, i * kstup);
            break;
         case kTransformCosWalsh:
         case kTransformCosHaar:
            m = (Int_t) TMath::Power(2, degree);
            l = 2 * numx / m;
            for (i = 0; i < l; i++)
               BitReverseHaar(working_vector, 2 * numx, m, i * m);
            GeneralExe(working_vector, 0, 2 * numx, degree, type);
            for (i = 0; i < numx; i++) {
               kstup = i / jstup;
               kstup = 2 * kstup * jstup;
               a = pi * (Double_t) (i % jstup) / (Double_t) (2 * jstup);
               a = TMath::Cos(a);
               b = working_vector[kstup + i % jstup];
               if (i % jstup == 0)
                  a = b / TMath::Sqrt(2.0);
               
               else
                  a = b / a;
               working_vector[i] = a;
               working_vector[i + 4 * numx] = 0;
            }
            break;
         case kTransformSinWalsh:
         case kTransformSinHaar:
            m = (Int_t) TMath::Power(2, degree);
            l = 2 * numx / m;
            for (i = 0; i < l; i++)
               BitReverseHaar(working_vector, 2 * numx, m, i * m);
            GeneralExe(working_vector, 0, 2 * numx, degree, type);
            for (i = 0; i < numx; i++) {
               kstup = i / jstup;
               kstup = 2 * kstup * jstup;
               a = pi * (Double_t) (i % jstup) / (Double_t) (2 * jstup);
               a = TMath::Cos(a);
               b = working_vector[jstup + kstup + i % jstup];
               if (i % jstup == 0)
                  a = b / TMath::Sqrt(2.0);
               
               else
                  a = b / a;
               working_vector[jstup + kstup / 2 - i % jstup - 1] = a;
               working_vector[i + 4 * numx] = 0;
            }
            break;
         }
         if (type > kTransformWalshHaar)
            kstup = (Int_t) TMath::Power(2, degree - 1);
         
         else
            kstup = (Int_t) TMath::Power(2, degree);
         jstup = numx / kstup;
         for (i = 0, l = 0; i < numx; i++, l = (l + kstup) % numx) {
            working_vector[numx + i] = working_vector[l + i / jstup];
            if (type == kTransformFourierWalsh
                 || type == kTransformFourierHaar
                 || type == kTransformWalshHaar)
               working_vector[numx + i + 2 * numx] =
                   working_vector[l + i / jstup + 2 * numx];
            
            else
               working_vector[numx + i + 4 * numx] =
                   working_vector[l + i / jstup + 4 * numx];
         }
         for (i = 0; i < numx; i++) {
            working_vector[i] = working_vector[numx + i];
            if (type == kTransformFourierWalsh
                 || type == kTransformFourierHaar
                 || type == kTransformWalshHaar)
               working_vector[i + 2 * numx] =
                   working_vector[numx + i + 2 * numx];
            
            else
               working_vector[i + 4 * numx] =
                   working_vector[numx + i + 4 * numx];
         }
         for (i = 0; i < numx; i++) {
            working_matrix[i][j] = working_vector[i];
            if (type == kTransformFourierWalsh
                 || type == kTransformFourierHaar
                 || type == kTransformWalshHaar)
               working_matrix[i][j + numy] = working_vector[i + 2 * numx];
            
            else
               working_matrix[i][j + numy] = working_vector[i + 4 * numx];
         }
      }
      for (i = 0; i < numx; i++) {
         kstup = (Int_t) TMath::Power(2, degree);
         jstup = numy / kstup;
         for (j = 0; j < numy; j++) {
            valx = working_matrix[i][j];
            valz = working_matrix[i][j + numy];
            if (type == kTransformCosWalsh
                 || type == kTransformCosHaar) {
               jstup = (Int_t) TMath::Power(2, degree) / 2;
               kstup = j / jstup;
               kstup = 2 * kstup * jstup;
               working_vector[kstup + j % jstup] = valx;
               working_vector[kstup + 2 * jstup - 1 - j % jstup] = valx;
               working_vector[kstup + j % jstup + 4 * numy] = valz;
               working_vector[kstup + 2 * jstup - 1 - j % jstup +
                               4 * numy] = valz;
            }
            
            else if (type == kTransformSinWalsh
                     || type == kTransformSinHaar) {
               jstup = (Int_t) TMath::Power(2, degree) / 2;
               kstup = j / jstup;
               kstup = 2 * kstup * jstup;
               working_vector[kstup + j % jstup] = valx;
               working_vector[kstup + 2 * jstup - 1 - j % jstup] = -valx;
               working_vector[kstup + j % jstup + 4 * numy] = valz;
               working_vector[kstup + 2 * jstup - 1 - j % jstup +
                               4 * numy] = -valz;
            }
            
            else {
               working_vector[j] = valx;
               working_vector[j + 2 * numy] = valz;
            }
         }
         switch (type) {
         case kTransformFourierWalsh:
         case kTransformFourierHaar:
         case kTransformWalshHaar:
            GeneralExe(working_vector, 1, numy, degree, type);
            for (j = 0; j < jstup; j++)
               BitReverseHaar(working_vector, numy, kstup, j * kstup);
            break;
         case kTransformCosWalsh:
         case kTransformCosHaar:
            m = (Int_t) TMath::Power(2, degree);
            l = 2 * numy / m;
            for (j = 0; j < l; j++)
               BitReverseHaar(working_vector, 2 * numy, m, j * m);
            GeneralExe(working_vector, 1, 2 * numy, degree, type);
            for (j = 0; j < numy; j++) {
               kstup = j / jstup;
               kstup = 2 * kstup * jstup;
               a = pi * (Double_t) (j % jstup) / (Double_t) (2 * jstup);
               a = TMath::Cos(a);
               b = working_vector[kstup + j % jstup];
               if (j % jstup == 0)
                  a = b / TMath::Sqrt(2.0);
               
               else
                  a = b / a;
               working_vector[j] = a;
               working_vector[j + 4 * numy] = 0;
            }
            break;
         case kTransformSinWalsh:
         case kTransformSinHaar:
            m = (Int_t) TMath::Power(2, degree);
            l = 2 * numy / m;
            for (j = 0; j < l; j++)
               BitReverseHaar(working_vector, 2 * numy, m, j * m);
            GeneralExe(working_vector, 1, 2 * numy, degree, type);
            for (j = 0; j < numy; j++) {
               kstup = j / jstup;
               kstup = 2 * kstup * jstup;
               a = pi * (Double_t) (j % jstup) / (Double_t) (2 * jstup);
               a = TMath::Cos(a);
               b = working_vector[jstup + kstup + j % jstup];
               if (j % jstup == 0)
                  a = b / TMath::Sqrt(2.0);
               
               else
                  a = b / a;
               working_vector[jstup + kstup / 2 - j % jstup - 1] = a;
               working_vector[j + 4 * numy] = 0;
            }
            break;
         }
         if (type > kTransformWalshHaar)
            kstup = (Int_t) TMath::Power(2, degree - 1);
         
         else
            kstup = (Int_t) TMath::Power(2, degree);
         jstup = numy / kstup;
         for (j = 0, l = 0; j < numy; j++, l = (l + kstup) % numy) {
            working_vector[numy + j] = working_vector[l + j / jstup];
            if (type == kTransformFourierWalsh
                 || type == kTransformFourierHaar
                 || type == kTransformWalshHaar)
               working_vector[numy + j + 2 * numy] =
                   working_vector[l + j / jstup + 2 * numy];
            
            else
               working_vector[numy + j + 4 * numy] =
                   working_vector[l + j / jstup + 4 * numy];
         }
         for (j = 0; j < numy; j++) {
            working_vector[j] = working_vector[numy + j];
            if (type == kTransformFourierWalsh
                 || type == kTransformFourierHaar
                 || type == kTransformWalshHaar)
               working_vector[j + 2 * numy] =
                   working_vector[numy + j + 2 * numy];
            
            else
               working_vector[j + 4 * numy] =
                   working_vector[numy + j + 4 * numy];
         }
         for (j = 0; j < numy; j++) {
            working_matrix[i][j] = working_vector[j];
            if (type == kTransformFourierWalsh
                 || type == kTransformFourierHaar
                 || type == kTransformWalshHaar)
               working_matrix[i][j + numy] = working_vector[j + 2 * numy];
            
            else
               working_matrix[i][j + numy] = working_vector[j + 4 * numy];
         }
      }
   }
   
   else if (direction == kTransformInverse) {
      for (i = 0; i < numx; i++) {
         kstup = (Int_t) TMath::Power(2, degree);
         jstup = numy / kstup;
         for (j = 0; j < numy; j++) {
            working_vector[j] = working_matrix[i][j];
            if (type == kTransformFourierWalsh
                 || type == kTransformFourierHaar
                 || type == kTransformWalshHaar)
               working_vector[j + 2 * numy] = working_matrix[i][j + numy];
            
            else
               working_vector[j + 4 * numy] = working_matrix[i][j + numy];
         }
         if (type > kTransformWalshHaar)
            kstup = (Int_t) TMath::Power(2, degree - 1);
         
         else
            kstup = (Int_t) TMath::Power(2, degree);
         jstup = numy / kstup;
         for (j = 0, l = 0; j < numy; j++, l = (l + kstup) % numy) {
            working_vector[numy + l + j / jstup] = working_vector[j];
            if (type == kTransformFourierWalsh
                 || type == kTransformFourierHaar
                 || type == kTransformWalshHaar)
               working_vector[numy + l + j / jstup + 2 * numy] =
                   working_vector[j + 2 * numy];
            
            else
               working_vector[numy + l + j / jstup + 4 * numy] =
                   working_vector[j + 4 * numy];
         }
         for (j = 0; j < numy; j++) {
            working_vector[j] = working_vector[numy + j];
            if (type == kTransformFourierWalsh
                 || type == kTransformFourierHaar
                 || type == kTransformWalshHaar)
               working_vector[j + 2 * numy] =
                   working_vector[numy + j + 2 * numy];
            
            else
               working_vector[j + 4 * numy] =
                   working_vector[numy + j + 4 * numy];
         }
         switch (type) {
         case kTransformFourierWalsh:
         case kTransformFourierHaar:
         case kTransformWalshHaar:
            for (j = 0; j < jstup; j++)
               BitReverseHaar(working_vector, numy, kstup, j * kstup);
            GeneralInv(working_vector, numy, degree, type);
            break;
         case kTransformCosWalsh:
         case kTransformCosHaar:
            jstup = (Int_t) TMath::Power(2, degree) / 2;
            m = (Int_t) TMath::Power(2, degree);
            l = 2 * numy / m;
            for (j = 0; j < numy; j++) {
               kstup = j / jstup;
               kstup = 2 * kstup * jstup;
               a = pi * (Double_t) (j % jstup) / (Double_t) (2 * jstup);
               if (j % jstup == 0) {
                  working_vector[2 * numy + kstup + j % jstup] =
                      working_vector[j] * TMath::Sqrt(2.0);
                  working_vector[2 * numy + kstup + j % jstup +
                                  4 * numy] = 0;
               }
               
               else {
                  b = TMath::Sin(a);
                  a = TMath::Cos(a);
                  working_vector[2 * numy + kstup + j % jstup +
                                  4 * numy] =
                      -(Double_t) working_vector[j] * b;
                  working_vector[2 * numy + kstup + j % jstup] =
                      (Double_t) working_vector[j] * a;
            } } for (j = 0; j < numy; j++) {
               kstup = j / jstup;
               kstup = 2 * kstup * jstup;
               if (j % jstup == 0) {
                  working_vector[2 * numy + kstup + jstup] = 0;
                  working_vector[2 * numy + kstup + jstup + 4 * numy] = 0;
               }
               
               else {
                  working_vector[2 * numy + kstup + 2 * jstup -
                                  j % jstup] =
                      working_vector[2 * numy + kstup + j % jstup];
                  working_vector[2 * numy + kstup + 2 * jstup -
                                  j % jstup + 4 * numy] =
                      -working_vector[2 * numy + kstup + j % jstup +
                                      4 * numy];
               }
            }
            for (j = 0; j < 2 * numy; j++) {
               working_vector[j] = working_vector[2 * numy + j];
               working_vector[j + 4 * numy] =
                   working_vector[2 * numy + j + 4 * numy];
            }
            GeneralInv(working_vector, 2 * numy, degree, type);
            m = (Int_t) TMath::Power(2, degree);
            l = 2 * numy / m;
            for (j = 0; j < l; j++)
               BitReverseHaar(working_vector, 2 * numy, m, j * m);
            break;
         case kTransformSinWalsh:
         case kTransformSinHaar:
            jstup = (Int_t) TMath::Power(2, degree) / 2;
            m = (Int_t) TMath::Power(2, degree);
            l = 2 * numy / m;
            for (j = 0; j < numy; j++) {
               kstup = j / jstup;
               kstup = 2 * kstup * jstup;
               a = pi * (Double_t) (j % jstup) / (Double_t) (2 * jstup);
               if (j % jstup == 0) {
                  working_vector[2 * numy + kstup + jstup + j % jstup] =
                      working_vector[jstup + kstup / 2 - j % jstup -
                                     1] * TMath::Sqrt(2.0);
                  working_vector[2 * numy + kstup + jstup + j % jstup +
                                  4 * numy] = 0;
               }
               
               else {
                  b = TMath::Sin(a);
                  a = TMath::Cos(a);
                  working_vector[2 * numy + kstup + jstup + j % jstup +
                                  4 * numy] =
                      -(Double_t) working_vector[jstup + kstup / 2 -
                                               j % jstup - 1] * b;
                  working_vector[2 * numy + kstup + jstup + j % jstup] =
                      (Double_t) working_vector[jstup + kstup / 2 -
                                              j % jstup - 1] * a;
            } } for (j = 0; j < numy; j++) {
               kstup = j / jstup;
               kstup = 2 * kstup * jstup;
               if (j % jstup == 0) {
                  working_vector[2 * numy + kstup] = 0;
                  working_vector[2 * numy + kstup + 4 * numy] = 0;
               }
               
               else {
                  working_vector[2 * numy + kstup + j % jstup] =
                      working_vector[2 * numy + kstup + 2 * jstup -
                                     j % jstup];
                  working_vector[2 * numy + kstup + j % jstup +
                                  4 * numy] =
                      -working_vector[2 * numy + kstup + 2 * jstup -
                                      j % jstup + 4 * numy];
               }
            }
            for (j = 0; j < 2 * numy; j++) {
               working_vector[j] = working_vector[2 * numy + j];
               working_vector[j + 4 * numy] =
                   working_vector[2 * numy + j + 4 * numy];
            }
            GeneralInv(working_vector, 2 * numy, degree, type);
            for (j = 0; j < l; j++)
               BitReverseHaar(working_vector, 2 * numy, m, j * m);
            break;
         }
         for (j = 0; j < numy; j++) {
            if (type > kTransformWalshHaar) {
               kstup = j / jstup;
               kstup = 2 * kstup * jstup;
               valx = working_vector[kstup + j % jstup];
               valz = working_vector[kstup + j % jstup + 4 * numy];
            }
            
            else {
               valx = working_vector[j];
               valz = working_vector[j + 2 * numy];
            }
            working_matrix[i][j] = valx;
            working_matrix[i][j + numy] = valz;
         }
      }
      for (j = 0; j < numy; j++) {
         kstup = (Int_t) TMath::Power(2, degree);
         jstup = numy / kstup;
         for (i = 0; i < numx; i++) {
            working_vector[i] = working_matrix[i][j];
            if (type == kTransformFourierWalsh
                 || type == kTransformFourierHaar
                 || type == kTransformWalshHaar)
               working_vector[i + 2 * numx] = working_matrix[i][j + numy];
            
            else
               working_vector[i + 4 * numx] = working_matrix[i][j + numy];
         }
         if (type > kTransformWalshHaar)
            kstup = (Int_t) TMath::Power(2, degree - 1);
         
         else
            kstup = (Int_t) TMath::Power(2, degree);
         jstup = numx / kstup;
         for (i = 0, l = 0; i < numx; i++, l = (l + kstup) % numx) {
            working_vector[numx + l + i / jstup] = working_vector[i];
            if (type == kTransformFourierWalsh
                 || type == kTransformFourierHaar
                 || type == kTransformWalshHaar)
               working_vector[numx + l + i / jstup + 2 * numx] =
                   working_vector[i + 2 * numx];
            
            else
               working_vector[numx + l + i / jstup + 4 * numx] =
                   working_vector[i + 4 * numx];
         }
         for (i = 0; i < numx; i++) {
            working_vector[i] = working_vector[numx + i];
            if (type == kTransformFourierWalsh
                 || type == kTransformFourierHaar
                 || type == kTransformWalshHaar)
               working_vector[i + 2 * numx] =
                   working_vector[numx + i + 2 * numx];
            
            else
               working_vector[i + 4 * numx] =
                   working_vector[numx + i + 4 * numx];
         }
         switch (type) {
         case kTransformFourierWalsh:
         case kTransformFourierHaar:
         case kTransformWalshHaar:
            for (i = 0; i < jstup; i++)
               BitReverseHaar(working_vector, numx, kstup, i * kstup);
            GeneralInv(working_vector, numx, degree, type);
            break;
         case kTransformCosWalsh:
         case kTransformCosHaar:
            jstup = (Int_t) TMath::Power(2, degree) / 2;
            m = (Int_t) TMath::Power(2, degree);
            l = 2 * numx / m;
            for (i = 0; i < numx; i++) {
               kstup = i / jstup;
               kstup = 2 * kstup * jstup;
               a = pi * (Double_t) (i % jstup) / (Double_t) (2 * jstup);
               if (i % jstup == 0) {
                  working_vector[2 * numx + kstup + i % jstup] =
                      working_vector[i] * TMath::Sqrt(2.0);
                  working_vector[2 * numx + kstup + i % jstup +
                                  4 * numx] = 0;
               }
               
               else {
                  b = TMath::Sin(a);
                  a = TMath::Cos(a);
                  working_vector[2 * numx + kstup + i % jstup +
                                  4 * numx] =
                      -(Double_t) working_vector[i] * b;
                  working_vector[2 * numx + kstup + i % jstup] =
                      (Double_t) working_vector[i] * a;
            } } for (i = 0; i < numx; i++) {
               kstup = i / jstup;
               kstup = 2 * kstup * jstup;
               if (i % jstup == 0) {
                  working_vector[2 * numx + kstup + jstup] = 0;
                  working_vector[2 * numx + kstup + jstup + 4 * numx] = 0;
               }
               
               else {
                  working_vector[2 * numx + kstup + 2 * jstup -
                                  i % jstup] =
                      working_vector[2 * numx + kstup + i % jstup];
                  working_vector[2 * numx + kstup + 2 * jstup -
                                  i % jstup + 4 * numx] =
                      -working_vector[2 * numx + kstup + i % jstup +
                                      4 * numx];
               }
            }
            for (i = 0; i < 2 * numx; i++) {
               working_vector[i] = working_vector[2 * numx + i];
               working_vector[i + 4 * numx] =
                   working_vector[2 * numx + i + 4 * numx];
            }
            GeneralInv(working_vector, 2 * numx, degree, type);
            m = (Int_t) TMath::Power(2, degree);
            l = 2 * numx / m;
            for (i = 0; i < l; i++)
               BitReverseHaar(working_vector, 2 * numx, m, i * m);
            break;
         case kTransformSinWalsh:
         case kTransformSinHaar:
            jstup = (Int_t) TMath::Power(2, degree) / 2;
            m = (Int_t) TMath::Power(2, degree);
            l = 2 * numx / m;
            for (i = 0; i < numx; i++) {
               kstup = i / jstup;
               kstup = 2 * kstup * jstup;
               a = pi * (Double_t) (i % jstup) / (Double_t) (2 * jstup);
               if (i % jstup == 0) {
                  working_vector[2 * numx + kstup + jstup + i % jstup] =
                      working_vector[jstup + kstup / 2 - i % jstup -
                                     1] * TMath::Sqrt(2.0);
                  working_vector[2 * numx + kstup + jstup + i % jstup +
                                  4 * numx] = 0;
               }
               
               else {
                  b = TMath::Sin(a);
                  a = TMath::Cos(a);
                  working_vector[2 * numx + kstup + jstup + i % jstup +
                                  4 * numx] =
                      -(Double_t) working_vector[jstup + kstup / 2 -
                                               i % jstup - 1] * b;
                  working_vector[2 * numx + kstup + jstup + i % jstup] =
                      (Double_t) working_vector[jstup + kstup / 2 -
                                              i % jstup - 1] * a;
            } } for (i = 0; i < numx; i++) {
               kstup = i / jstup;
               kstup = 2 * kstup * jstup;
               if (i % jstup == 0) {
                  working_vector[2 * numx + kstup] = 0;
                  working_vector[2 * numx + kstup + 4 * numx] = 0;
               }
               
               else {
                  working_vector[2 * numx + kstup + i % jstup] =
                      working_vector[2 * numx + kstup + 2 * jstup -
                                     i % jstup];
                  working_vector[2 * numx + kstup + i % jstup +
                                  4 * numx] =
                      -working_vector[2 * numx + kstup + 2 * jstup -
                                      i % jstup + 4 * numx];
               }
            }
            for (i = 0; i < 2 * numx; i++) {
               working_vector[i] = working_vector[2 * numx + i];
               working_vector[i + 4 * numx] =
                   working_vector[2 * numx + i + 4 * numx];
            }
            GeneralInv(working_vector, 2 * numx, degree, type);
            for (i = 0; i < l; i++)
               BitReverseHaar(working_vector, 2 * numx, m, i * m);
            break;
         }
         for (i = 0; i < numx; i++) {
            if (type > kTransformWalshHaar) {
               kstup = i / jstup;
               kstup = 2 * kstup * jstup;
               val = working_vector[kstup + i % jstup];
            }
            
            else
               val = working_vector[i];
            working_matrix[i][j] = val;
         }
      }
   }
   return;
}

///////////////////////END OF AUXILIARY TRANSFORM2 FUNCTIONS//////////////////////////////////////////

    
//////////TRANSFORM2 FUNCTION - CALCULATES DIFFERENT 2-D DIRECT AND INVERSE ORTHOGONAL TRANSFORMS//////
//_____________________________________________________________________________
void TSpectrum2Transform::Transform(const Float_t **fSource, Float_t **fDest)
{
//////////////////////////////////////////////////////////////////////////////////////////
/* TWO-DIMENSIONAL TRANSFORM FUNCTION                    */ 
/* This function transforms the source spectrum. The calling program               */ 
/*      should fill in input parameters.                                          */ 
/* Transformed data are written into dest spectrum.                                */ 
/*                         */ 
/* Function parameters:                      */ 
/* fSource-pointer to the matrix of source spectrum, its size should               */ 
/*             be fSizex*fSizey except for inverse FOURIER, FOUR-WALSH, FOUR-HAAR       */ 
/*             transform. These need fSizex*2*fSizey length to supply real and          */ 
/*             imaginary coefficients.                                                  */ 
/* fDest-pointer to the matrix of destination data, its size should be             */ 
/*           fSizex*fSizey except for direct FOURIER, FOUR-WALSh, FOUR-HAAR. These      */ 
/*           need fSizex*2*fSizey length to store real and imaginary coefficients       */ 
/* fSizex,fSizey-basic dimensions of source and dest spectra                       */ 
/*                         */ 
//////////////////////////////////////////////////////////////////////////////////////////
//Begin_Html <!--
/* -->
<div class=Section1>

<p class=MsoNormal><b><span style='font-size:14.0pt'>Transform methods</span></b></p>

<p class=MsoNormal style='text-align:justify'><i>&nbsp;</i></p>

<p class=MsoNormal style='text-align:justify'><i>Goal: to analyze experimental
data using orthogonal transforms</i></p>

<p class=MsoNormal style='margin-left:36.0pt;text-align:justify;text-indent:
-18.0pt'>•<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</span>orthogonal transforms can be successfully used for the processing of
nuclear spectra (not only) </p>

<p class=MsoNormal style='margin-left:36.0pt;text-align:justify;text-indent:
-18.0pt'>•<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</span>they can be used to remove high frequency noise, to increase
signal-to-background ratio as well as to enhance low intensity components [1],
to carry out e.g. Fourier analysis etc. </p>

<p class=MsoNormal style='margin-left:36.0pt;text-align:justify;text-indent:
-18.0pt'>•<span style='font:7.0pt "Times New Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</span>we have implemented the function for the calculation of the commonly
used orthogonal transforms as well as functions for the filtration and
enhancement of experimental data</p>

<p class=MsoNormal><i>&nbsp;</i></p>

<p class=MsoNormal><i>Function:</i></p>

<p class=MsoNormal>void <a
href="http://root.cern.ch/root/html/TSpectrum.html#TSpectrum:Fit1Awmi"><b>TSpectrumTransform2::Transform</b></a><b>(const
<a href="http://root.cern.ch/root/html/ListOfTypes.html#float">float</a> **fSource,
<a href="http://root.cern.ch/root/html/ListOfTypes.html#float">float</a> **fDest)</b></p>

<p class=MsoNormal style='text-align:justify'>&nbsp;</p>

<p class=MsoNormal style='text-align:justify'>This function transforms the
source spectrum according to the given input parameters. Transformed data are
written into dest spectrum. Before the Transform function is called the class
must be created by constructor and the type of the transform as well as some
other parameters must be set using a set of setter funcions:</p>

<p class=MsoNormal><span lang=FR>&nbsp;</span></p>

<p class=MsoNormal><i><span style='color:red'>Member variables of
TSpectrumTransform2 class:</span></i></p>

<p class=MsoNormal style='margin-left:25.65pt;text-align:justify'><b>fSource</b>-pointer
to the matrix of source spectrum. Its lengths should be equal to the “fSizex,
fSizey” parameters except for inverse FOURIER, FOUR-WALSH, FOUR-HAAR
transforms. These need “2*fSizex*fSizey” length to supply real and imaginary
coefficients.                   </p>

<p class=MsoNormal style='margin-left:25.65pt;text-align:justify'><b>fDest</b>-pointer
to the matrix of destination spectrum. Its lengths should be equal to the
“fSizex, fSizey” parameters except for inverse FOURIER, FOUR-WALSH, FOUR-HAAR
transforms. These need “2*fSizex*fSizey” length to store real and imaginary
coefficients. </p>

<p class=MsoNormal style='text-align:justify'>        <b>fSizeX,fSizeY</b>-basic
lengths of the source and dest spectra. They<span style='color:fuchsia'> should
be power  </span></p>

<p class=MsoNormal style='text-align:justify'><span style='color:fuchsia'>     
of 2.</span></p>

<p class=MsoNormal style='margin-left:25.65pt;text-align:justify;text-indent:
-2.85pt'><b>fType</b>-type of transform</p>

<p class=MsoNormal style='text-align:justify'>            Classic transforms:</p>

<p class=MsoNormal style='text-align:justify'>                        kTransformHaar
</p>

<p class=MsoNormal style='text-align:justify'>                        kTransformWalsh
</p>

<p class=MsoNormal style='text-align:justify'>                        kTransformCos
</p>

<p class=MsoNormal style='text-align:justify'>                        kTransformSin
</p>

<p class=MsoNormal style='text-align:justify'>                        kTransformFourier
</p>

<p class=MsoNormal style='text-align:justify'>                        kTransformHartley
</p>

<p class=MsoNormal style='text-align:justify'>            Mixed transforms:</p>

<p class=MsoNormal style='text-align:justify'>                        kTransformFourierWalsh
</p>

<p class=MsoNormal style='text-align:justify'>                        kTransformFourierHaar
</p>

<p class=MsoNormal style='text-align:justify'>                        kTransformWalshHaar
</p>

<p class=MsoNormal style='text-align:justify'>                        kTransformCosWalsh
</p>

<p class=MsoNormal style='text-align:justify'>                        kTransformCosHaar
</p>

<p class=MsoNormal style='text-align:justify'>                        kTransformSinWalsh
</p>

<p class=MsoNormal style='text-align:justify'>                        kTransformSinHaar
</p>

<p class=MsoNormal style='text-align:justify;text-indent:22.8pt'><b>fDirection</b>-direction-transform
direction (forward, inverse)</p>

<p class=MsoNormal style='text-align:justify'>                        kTransformForward
</p>

<p class=MsoNormal style='text-align:justify'>                        kTransformInverse
</p>

<p class=MsoNormal style='text-align:justify;text-indent:22.8pt'><b>fDegree</b>-applies
only for mixed transforms [2], [3], [4]. </p>

<p class=MsoNormal style='text-align:justify;text-indent:22.8pt'>                
<span style='color:fuchsia'> Allowed range  <sub><img border=0 width=100
height=27 src="gif/spectrum2transform_transform_image001.gif"></sub>. </span></p>

<p class=MsoNormal style='text-align:justify'><b><i>References:</i></b></p>

<p class=MsoNormal style='text-align:justify'>[1] C.V. Hampton, B. Lian, Wm. C.
McHarris: Fast-Fourier-transform spectral enhancement techniques for gamma-ray
spectroscopy. NIM A353 (1994) 280-284. </p>

<p class=MsoNormal style='text-align:justify'>[2] Morhá&#269; M., Matoušek V.,
New adaptive Cosine-Walsh  transform and its application to nuclear data
compression, IEEE Transactions on Signal Processing 48 (2000) 2693.  </p>

<p class=MsoNormal style='text-align:justify'>[3] Morhá&#269; M., Matoušek V.,
Data compression using new fast adaptive Cosine-Haar transforms, Digital Signal
Processing 8 (1998) 63. </p>

<p class=MsoNormal style='text-align:justify'>[4] Morhá&#269; M., Matoušek V.:
Multidimensional nuclear data compression using fast adaptive Walsh-Haar
transform. Acta Physica Slovaca 51 (2001) 307. </p>

<p class=MsoNormal style='text-align:justify'>&nbsp;</p>

<p class=MsoNormal style='text-align:justify'><i>Example 1 – script Transform2.c:</i></p>

<p class=MsoNormal style='text-align:justify'><span style='font-size:16.0pt'><img
border=0 width=602 height=455 src="gif/spectrum2transform_transform_image002.jpg"></span></p>

<p class=MsoNormal><b>Fig. 1 Original two-dimensional noisy spectrum</b></p>

<p class=MsoNormal style='text-align:justify'><span style='font-size:16.0pt'><img
border=0 width=602 height=455 src="gif/spectrum2transform_transform_image003.jpg"></span></p>

<p class=MsoNormal style='text-align:justify'><b>Fig. 2 Transformed spectrum
from Fig. 1 using Cosine transform. Energy of the trasnsformed data is
concentrated around the beginning of the coordinate system</b></p>

<p class=MsoNormal><b><span style='font-size:16.0pt;color:#339966'>&nbsp;</span></b></p>

<p class=MsoNormal><b><span style='color:#339966'>Script:</span></b></p>

<p class=MsoNormal><span style='font-size:10.0pt'>// Example to illustrate
Transform function (class TSpectrumTransform2).</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>// To execute this example,
do</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>// root &gt; .x Transform2.C</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>void Transform2() {</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t i, j;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t nbinsx =
256;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t nbinsy =
256;   </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t xmin  = 0;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t xmax  =
nbinsx;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t ymin  = 0;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t ymax  = nbinsy;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   </span><span
style='font-size:10.0pt'>Float_t ** source = new float *[nbinsx];   </span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   Float_t ** dest = new
float *[nbinsx];      </span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   for (i=0;i&lt;nbinsx;i++)</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>                                                source[i]=new
float[nbinsy];</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   for (i=0;i&lt;nbinsx;i++)</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>                                                dest[i]=new
float[nbinsy];   </span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   TH2F *trans = new
TH2F(&quot;trans&quot;,&quot;Background
estimation&quot;,nbinsx,xmin,xmax,nbinsy,ymin,ymax);</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   TFile *f = new
TFile(&quot;TSpectrum2.root&quot;);</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   trans=(TH2F*)
f-&gt;Get(&quot;back3;1&quot;);</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   TCanvas *Tr = new
TCanvas(&quot;Transform&quot;,&quot;Illustation of transform
function&quot;,10,10,1000,700);</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   for (i = 0; i &lt; nbinsx;
i++){</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>     for (j = 0; j &lt;
nbinsy; j++){</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>                    source[i][j]
= trans-&gt;GetBinContent(i + 1,j + 1); </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>                 }</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   }           </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>  
TSpectrumTransform2 *t = new TSpectrumTransform2(256,256);   </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>  
t-&gt;SetTransformType(t-&gt;kTransformCos,0);</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   t-&gt;SetDirection(t-&gt;kTransformForward);</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>  
t-&gt;Transform(source,dest);</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   </span><span
style='font-size:10.0pt'>for (i = 0; i &lt; nbinsx; i++){</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>     for (j = 0; j &lt;
nbinsy; j++){</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>                  trans-&gt;SetBinContent(i
+ 1, j + 1,dest[i][j]);</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>                 }</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   }   </span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>  
trans-&gt;Draw(&quot;SURF&quot;);      </span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>}</span></p>

</div>

<!-- */
// --> End_Html
   Int_t i, j;
   Int_t size;
   Float_t *working_vector = 0, **working_matrix = 0;
   size = (Int_t) TMath::Max(fSizeX, fSizeY);
   switch (fTransformType) {
   case kTransformHaar:
   case kTransformWalsh:
      working_vector = new Float_t[2 * size];
      working_matrix = new Float_t *[fSizeX];
      for (i = 0; i < fSizeX; i++)
         working_matrix[i] = new Float_t[fSizeY];
      break;
   case kTransformCos:
   case kTransformSin:
   case kTransformFourier:
   case kTransformHartley:
   case kTransformFourierWalsh:
   case kTransformFourierHaar:
   case kTransformWalshHaar:
      working_vector = new Float_t[4 * size];
      working_matrix = new Float_t *[fSizeX];
      for (i = 0; i < fSizeX; i++)
         working_matrix[i] = new Float_t[2 * fSizeY];
      break;
   case kTransformCosWalsh:
   case kTransformCosHaar:
   case kTransformSinWalsh:
   case kTransformSinHaar:
      working_vector = new Float_t[8 * size];
      working_matrix = new Float_t *[fSizeX];
      for (i = 0; i < fSizeX; i++)
         working_matrix[i] = new Float_t[2 * fSizeY];
      break;
   }
   if (fDirection == kTransformForward) {
      switch (fTransformType) {
      case kTransformHaar:
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               working_matrix[i][j] = fSource[i][j];
            }
         }
         HaarWalsh2(working_matrix, working_vector, fSizeX, fSizeY,
                     fDirection, kTransformHaar);
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j];
            }
         }
         break;
      case kTransformWalsh:
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               working_matrix[i][j] = fSource[i][j];
            }
         }
         HaarWalsh2(working_matrix, working_vector, fSizeX, fSizeY,
                     fDirection, kTransformWalsh);
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j];
            }
         }
         break;
      case kTransformCos:
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               working_matrix[i][j] = fSource[i][j];
            }
         }
         FourCos2(working_matrix, working_vector, fSizeX, fSizeY, fDirection,
                   kTransformCos);
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j];
            }
         }
         break;
      case kTransformSin:
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               working_matrix[i][j] = fSource[i][j];
            }
         }
         FourCos2(working_matrix, working_vector, fSizeX, fSizeY, fDirection,
                   kTransformSin);
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j];
            }
         }
         break;
      case kTransformFourier:
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               working_matrix[i][j] = fSource[i][j];
            }
         }
         FourCos2(working_matrix, working_vector, fSizeX, fSizeY, fDirection,
                   kTransformFourier);
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j];
            }
         }
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j + fSizeY] = working_matrix[i][j + fSizeY];
            }
         }
         break;
      case kTransformHartley:
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               working_matrix[i][j] = fSource[i][j];
            }
         }
         FourCos2(working_matrix, working_vector, fSizeX, fSizeY, fDirection,
                   kTransformHartley);
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j];
            }
         }
         break;
      case kTransformFourierWalsh:
      case kTransformFourierHaar:
      case kTransformWalshHaar:
      case kTransformCosWalsh:
      case kTransformCosHaar:
      case kTransformSinWalsh:
      case kTransformSinHaar:
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               working_matrix[i][j] = fSource[i][j];
            }
         }
         General2(working_matrix, working_vector, fSizeX, fSizeY, fDirection,
                   fTransformType, fDegree);
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j];
            }
         }
         if (fTransformType == kTransformFourierWalsh
              || fTransformType == kTransformFourierHaar) {
            for (i = 0; i < fSizeX; i++) {
               for (j = 0; j < fSizeY; j++) {
                  fDest[i][j + fSizeY] = working_matrix[i][j + fSizeY];
               }
            }
         }
         break;
      }
   }
   
   else if (fDirection == kTransformInverse) {
      switch (fTransformType) {
      case kTransformHaar:
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               working_matrix[i][j] = fSource[i][j];
            }
         }
         HaarWalsh2(working_matrix, working_vector, fSizeX, fSizeY,
                     fDirection, kTransformHaar);
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j];
            }
         }
         break;
      case kTransformWalsh:
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               working_matrix[i][j] = fSource[i][j];
            }
         }
         HaarWalsh2(working_matrix, working_vector, fSizeX, fSizeY,
                     fDirection, kTransformWalsh);
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j];
            }
         }
         break;
      case kTransformCos:
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               working_matrix[i][j] = fSource[i][j];
            }
         }
         FourCos2(working_matrix, working_vector, fSizeX, fSizeY, fDirection,
                   kTransformCos);
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j];
            }
         }
         break;
      case kTransformSin:
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               working_matrix[i][j] = fSource[i][j];
            }
         }
         FourCos2(working_matrix, working_vector, fSizeX, fSizeY, fDirection,
                   kTransformSin);
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j];
            }
         }
         break;
      case kTransformFourier:
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               working_matrix[i][j] = fSource[i][j];
            }
         }
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               working_matrix[i][j + fSizeY] = fSource[i][j + fSizeY];
            }
         }
         FourCos2(working_matrix, working_vector, fSizeX, fSizeY, fDirection,
                   kTransformFourier);
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j];
            }
         }
         break;
      case kTransformHartley:
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               working_matrix[i][j] = fSource[i][j];
            }
         }
         FourCos2(working_matrix, working_vector, fSizeX, fSizeY, fDirection,
                   kTransformHartley);
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j];
            }
         }
         break;
      case kTransformFourierWalsh:
      case kTransformFourierHaar:
      case kTransformWalshHaar:
      case kTransformCosWalsh:
      case kTransformCosHaar:
      case kTransformSinWalsh:
      case kTransformSinHaar:
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               working_matrix[i][j] = fSource[i][j];
            }
         }
         if (fTransformType == kTransformFourierWalsh
              || fTransformType == kTransformFourierHaar) {
            for (i = 0; i < fSizeX; i++) {
               for (j = 0; j < fSizeY; j++) {
                  working_matrix[i][j + fSizeY] = fSource[i][j + fSizeY];
               }
            }
         }
         General2(working_matrix, working_vector, fSizeX, fSizeY, fDirection,
                   fTransformType, fDegree);
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j];
            }
         }
         break;
      }
   }
   for (i = 0; i < fSizeX; i++) {
      delete[]working_matrix[i];
   }
   delete[]working_matrix;
   delete[]working_vector;
   return;
}
//////////END OF TRANSFORM2 FUNCTION/////////////////////////////////
//_______________________________________________________________________________________
//////////FILTER2_ZONAL FUNCTION - CALCULATES DIFFERENT 2-D ORTHOGONAL TRANSFORMS, SETS GIVEN REGION TO FILTER COEFFICIENT AND TRANSFORMS IT BACK//////
void TSpectrum2Transform::FilterZonal(const Float_t **fSource, Float_t **fDest) 
{
//////////////////////////////////////////////////////////////////////////////////////////
/* TWO-DIMENSIONAL FILTER ZONAL FUNCTION                      */ 
/* This function transforms the source spectrum. The calling program               */ 
/*      should fill in input parameters. Then it sets transformed                       */ 
/*      coefficients in the given region to the given                                   */ 
/*      filter_coeff and transforms it back                                             */ 
/* Filtered data are written into dest spectrum.                                   */ 
/*                         */ 
/* Function parameters:                      */ 
/* fSource-pointer to the matrix of source spectrum, its size should               */ 
/*             be fSizeX*fSizeY                                                         */ 
/* fDest-pointer to the matrix of destination data, its size should be             */ 
/*           fSizeX*fSizeY                                                              */ 
/*                         */ 
//////////////////////////////////////////////////////////////////////////////////////////
//Begin_Html <!--
/* -->
<div class=Section2>

<p class=MsoNormal><b><span style='font-size:14.0pt'>Example of zonal filtering</span></b></p>

<p class=MsoNormal><i>&nbsp;</i></p>

<p class=MsoNormal><i>Function:</i></p>

<p class=MsoNormal>void <a
href="http://root.cern.ch/root/html/TSpectrum.html#TSpectrum:Fit1Awmi"><b>TSpectrumTransform2::FilterZonal</b></a><b>(const
<a href="http://root.cern.ch/root/html/ListOfTypes.html#float">float</a> **fSource,
<a href="http://root.cern.ch/root/html/ListOfTypes.html#float">float</a> **fDest)</b></p>

<p class=MsoNormal style='text-align:justify'>&nbsp;</p>

<p class=MsoNormal style='text-align:justify'>This function transforms the
source spectrum (for details see Transform function).  Before the FilterZonal
function is called the class must be created by constructor and the type of the
transform as well as some other parameters must be set using a set of setter
funcions. The FilterZonal function sets transformed coefficients in the given
region (fXmin, fXmax) to the given fFilterCoeff and transforms it back. Filtered
data are written into dest spectrum. </p>

<p class=MsoNormal style='text-align:justify'>&nbsp;</p>

<p class=MsoNormal style='text-align:justify'><i>Example  – script Fitler2.c:</i></p>

<p class=MsoNormal style='text-align:justify'><span style='font-size:16.0pt'><img
border=0 width=602 height=455 src="gif/spectrum2transform_filter_image001.jpg"></span></p>

<p class=MsoNormal><b>Fig. 1 Original two-dimensional noisy spectrum</b></p>

<p class=MsoNormal><b><span style='font-size:14.0pt'><img border=0 width=602
height=455 src="gif/spectrum2transform_filter_image002.jpg"></span></b></p>

<p class=MsoNormal style='text-align:justify'><b>Fig. 2 Filtered spectrum using
Cosine transform and zonal filtration (channels in regions (128-255)x(0-255)
and (0-255)x(128-255) were set to 0).  </b></p>

<p class=MsoNormal><b><span style='color:#339966'>&nbsp;</span></b></p>

<p class=MsoNormal><b><span style='color:#339966'>Script:</span></b></p>

<p class=MsoNormal><span style='font-size:10.0pt'>// Example to illustrate
zonal filtration (class TSpectrumTransform2).</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>// To execute this example,
do</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>// root &gt; .x Filter2.C</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'> </span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>void Filter2() {</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   Int_t i, j;</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   </span><span lang=FR
style='font-size:10.0pt'>Int_t nbinsx = 256;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t nbinsy =
256;   </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t xmin  = 0;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t xmax  =
nbinsx;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t ymin  = 0;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t ymax  =
nbinsy;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   </span><span
style='font-size:10.0pt'>Float_t ** source = new float *[nbinsx];   </span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   Float_t ** dest = new
float *[nbinsx];      </span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   for (i=0;i&lt;nbinsx;i++)</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>                                                source[i]=new
float[nbinsy];</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   for (i=0;i&lt;nbinsx;i++)</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>                                                dest[i]=new
float[nbinsy];   </span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   TH2F *trans = new
TH2F(&quot;trans&quot;,&quot;Background
estimation&quot;,nbinsx,xmin,xmax,nbinsy,ymin,ymax);</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   TFile *f = new
TFile(&quot;TSpectrum2.root&quot;);</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   trans=(TH2F*)
f-&gt;Get(&quot;back3;1&quot;);</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   TCanvas *Tr = new
TCanvas(&quot;Transform&quot;,&quot;Illustation of transform
function&quot;,10,10,1000,700);</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   for (i = 0; i &lt; nbinsx;
i++){</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>     for (j = 0; j &lt;
nbinsy; j++){</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>                    </span><span
lang=FR style='font-size:10.0pt'>source[i][j] = trans-&gt;GetBinContent(i + 1,j
+ 1); </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>                 }</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   }           </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>  
TSpectrumTransform2 *t = new TSpectrumTransform2(256,256);   </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   t-&gt;SetTransformType(t-&gt;kTransformCos,0);  
</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>  
t-&gt;SetRegion(0,255,128,255);</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>  
t-&gt;FilterZonal(source,dest);     </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   </span><span
style='font-size:10.0pt'>for (i = 0; i &lt; nbinsx; i++){</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>     for (j = 0; j &lt;
nbinsy; j++){</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>                    </span><span
lang=FR style='font-size:10.0pt'>source[i][j] = dest[i][j]; </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>                 }</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   }   </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>  
t-&gt;SetRegion(128,255,0,255);</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   t-&gt;FilterZonal(source,dest);       
</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>  
trans-&gt;Draw(&quot;SURF&quot;);     </span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>}</span></p>

</div>

<!-- */
// --> End_Html

   Int_t i, j;
   Double_t a, old_area = 0, new_area = 0;
   Int_t size;
   Float_t *working_vector = 0, **working_matrix = 0;
   size = (Int_t) TMath::Max(fSizeX, fSizeY);
   switch (fTransformType) {
   case kTransformHaar:
   case kTransformWalsh:
      working_vector = new Float_t[2 * size];
      working_matrix = new Float_t *[fSizeX];
      for (i = 0; i < fSizeX; i++)
         working_matrix[i] = new Float_t[fSizeY];
      break;
   case kTransformCos:
   case kTransformSin:
   case kTransformFourier:
   case kTransformHartley:
   case kTransformFourierWalsh:
   case kTransformFourierHaar:
   case kTransformWalshHaar:
      working_vector = new Float_t[4 * size];
      working_matrix = new Float_t *[fSizeX];
      for (i = 0; i < fSizeX; i++)
         working_matrix[i] = new Float_t[2 * fSizeY];
      break;
   case kTransformCosWalsh:
   case kTransformCosHaar:
   case kTransformSinWalsh:
   case kTransformSinHaar:
      working_vector = new Float_t[8 * size];
      working_matrix = new Float_t *[fSizeX];
      for (i = 0; i < fSizeX; i++)
         working_matrix[i] = new Float_t[2 * fSizeY];
      break;
   }
   switch (fTransformType) {
   case kTransformHaar:
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            working_matrix[i][j] = fSource[i][j];
            old_area = old_area + fSource[i][j];
         }
      }
      HaarWalsh2(working_matrix, working_vector, fSizeX, fSizeY,
                  kTransformForward, kTransformHaar);
      break;
   case kTransformWalsh:
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            working_matrix[i][j] = fSource[i][j];
            old_area = old_area + fSource[i][j];
         }
      }
      HaarWalsh2(working_matrix, working_vector, fSizeX, fSizeY,
                  kTransformForward, kTransformWalsh);
      break;
   case kTransformCos:
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            working_matrix[i][j] = fSource[i][j];
            old_area = old_area + fSource[i][j];
         }
      }
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformForward, kTransformCos);
      break;
   case kTransformSin:
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            working_matrix[i][j] = fSource[i][j];
            old_area = old_area + fSource[i][j];
         }
      }
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformForward, kTransformSin);
      break;
   case kTransformFourier:
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            working_matrix[i][j] = fSource[i][j];
            old_area = old_area + fSource[i][j];
         }
      }
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformForward, kTransformFourier);
      break;
   case kTransformHartley:
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            working_matrix[i][j] = fSource[i][j];
            old_area = old_area + fSource[i][j];
         }
      }
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformForward, kTransformHartley);
      break;
   case kTransformFourierWalsh:
   case kTransformFourierHaar:
   case kTransformWalshHaar:
   case kTransformCosWalsh:
   case kTransformCosHaar:
   case kTransformSinWalsh:
   case kTransformSinHaar:
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            working_matrix[i][j] = fSource[i][j];
            old_area = old_area + fSource[i][j];
         }
      }
      General2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformForward, fTransformType, fDegree);
      break;
   }
   for (i = 0; i < fSizeX; i++) {
      for (j = 0; j < fSizeY; j++) {
         if (i >= fXmin && i <= fXmax && j >= fYmin && j <= fYmax)
            working_matrix[i][j] = fFilterCoeff;
      }
   }
   if (fTransformType == kTransformFourier || fTransformType == kTransformFourierWalsh
        || fTransformType == kTransformFourierHaar) {
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            if (i >= fXmin && i <= fXmax && j >= fYmin && j <= fYmax)
               working_matrix[i][j + fSizeY] = fFilterCoeff;
         }
      }
   }
   switch (fTransformType) {
   case kTransformHaar:
      HaarWalsh2(working_matrix, working_vector, fSizeX, fSizeY,
                  kTransformInverse, kTransformHaar);
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            new_area = new_area + working_matrix[i][j];
         }
      }
      if (new_area != 0) {
         a = old_area / new_area;
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j] * a;
            }
         }
      }
      break;
   case kTransformWalsh:
      HaarWalsh2(working_matrix, working_vector, fSizeX, fSizeY,
                  kTransformInverse, kTransformWalsh);
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            new_area = new_area + working_matrix[i][j];
         }
      }
      if (new_area != 0) {
         a = old_area / new_area;
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j] * a;
            }
         }
      }
      break;
   case kTransformCos:
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformInverse, kTransformCos);
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            new_area = new_area + working_matrix[i][j];
         }
      }
      if (new_area != 0) {
         a = old_area / new_area;
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j] * a;
            }
         }
      }
      break;
   case kTransformSin:
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformInverse, kTransformSin);
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            new_area = new_area + working_matrix[i][j];
         }
      }
      if (new_area != 0) {
         a = old_area / new_area;
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j] * a;
            }
         }
      }
      break;
   case kTransformFourier:
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformInverse, kTransformFourier);
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            new_area = new_area + working_matrix[i][j];
         }
      }
      if (new_area != 0) {
         a = old_area / new_area;
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j] * a;
            }
         }
      }
      break;
   case kTransformHartley:
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformInverse, kTransformHartley);
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            new_area = new_area + working_matrix[i][j];
         }
      }
      if (new_area != 0) {
         a = old_area / new_area;
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j] * a;
            }
         }
      }
      break;
   case kTransformFourierWalsh:
   case kTransformFourierHaar:
   case kTransformWalshHaar:
   case kTransformCosWalsh:
   case kTransformCosHaar:
   case kTransformSinWalsh:
   case kTransformSinHaar:
      General2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformInverse, fTransformType, fDegree);
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            new_area = new_area + working_matrix[i][j];
         }
      }
      if (new_area != 0) {
         a = old_area / new_area;
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j] * a;
            }
         }
      }
      break;
   }
   for (i = 0; i < fSizeX; i++) {
      delete[]working_matrix[i];
   }
   delete[]working_matrix;
   delete[]working_vector;
   return;
}


//////////  END OF FILTER2_ZONAL FUNCTION/////////////////////////////////
//////////ENHANCE2 FUNCTION - CALCULATES DIFFERENT 2-D ORTHOGONAL TRANSFORMS, MULTIPLIES GIVEN REGION BY ENHANCE COEFFICIENT AND TRANSFORMS IT BACK//////
//______________________________________________________________________
void TSpectrum2Transform::Enhance(const Float_t **fSource, Float_t **fDest)
{
//////////////////////////////////////////////////////////////////////////////////////////
/* TWO-DIMENSIONAL ENHANCE ZONAL FUNCTION                     */ 
/* This function transforms the source spectrum. The calling program               */ 
/*      should fill in input parameters. Then it multiplies transformed                 */ 
/*      coefficients in the given region by the given                                   */ 
/*      enhance_coeff and transforms it back                                            */ 
/*                         */ 
/* Function parameters:                      */ 
/* fSource-pointer to the matrix of source spectrum, its size should               */ 
/*             be fSizeX*fSizeY                                                         */ 
/* fDest-pointer to the matrix of destination data, its size should be             */ 
/*           fSizeX*fSizeY                                                              */ 
/*                         */ 
//////////////////////////////////////////////////////////////////////////////////////////
//Begin_Html <!--
/* -->
<div class=Section3>

<p class=MsoNormal><b><span style='font-size:14.0pt'>Example of enhancement</span></b></p>

<p class=MsoNormal><i>&nbsp;</i></p>

<p class=MsoNormal><i>Function:</i></p>

<p class=MsoNormal>void <a
href="http://root.cern.ch/root/html/TSpectrum.html#TSpectrum:Fit1Awmi"><b>TSpectrumTransform2::Enhance</b></a><b>(const
<a href="http://root.cern.ch/root/html/ListOfTypes.html#float">float</a>
**fSource, <a href="http://root.cern.ch/root/html/ListOfTypes.html#float">float</a>
**fDest)</b></p>

<p class=MsoNormal style='text-align:justify'>&nbsp;</p>

<p class=MsoNormal style='text-align:justify'>This function transforms the
source spectrum (for details see Transform function).  Before the Enhance
function is called the class must be created by constructor and the type of the
transform as well as some other parameters must be set using a set of setter
funcions. The Enhance function multiplies transformed coefficients in the given
region (fXmin, fXmax, fYmin, fYmax) by the given fEnhancCoeff and transforms it
back. Enhanced data are written into dest spectrum.</p>

<p class=MsoNormal style='text-align:justify'><i>Example – script Enhance2.c:</i></p>

<p class=MsoNormal style='text-align:justify'><span style='font-size:16.0pt'><img
border=0 width=602 height=455 src="gif/spectrum2transform_enhance_image001.jpg"></span></p>

<p class=MsoNormal><b>Fig. 1 Original two-dimensional noisy spectrum</b></p>

<p class=MsoNormal style='text-align:justify'><i><span style='font-size:16.0pt'><img
border=0 width=602 height=455 src="gif/spectrum2transform_enhance_image002.jpg"></span></i></p>

<p class=MsoNormal style='text-align:justify'><b>Fig. 2 Enhanced spectrum of
the data from Fig. 1 using Cosine transform (channels in region (0-63)x(0-63)
were multiplied by 5) </b></p>

<p class=MsoNormal><b><span style='font-size:16.0pt;color:#339966'>&nbsp;</span></b></p>

<p class=MsoNormal><b><span style='color:#339966'>Script:</span></b></p>

<p class=MsoNormal><span style='font-size:10.0pt'>// Example to illustrate
enhancement (class TSpectrumTransform2).</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>// To execute this example,
do</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>// root &gt; .x Enhance2.C</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'> </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>void Enhance2() {</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t i, j;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t nbinsx =
256;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t nbinsy =
256;   </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t xmin  = 0;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t xmax  =
nbinsx;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t ymin  = 0;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   Int_t ymax  =
nbinsy;</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   </span><span
style='font-size:10.0pt'>Float_t ** source = new float *[nbinsx];   </span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   Float_t ** dest = new
float *[nbinsx];      </span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   for (i=0;i&lt;nbinsx;i++)</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>                                                source[i]=new
float[nbinsy];</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   for (i=0;i&lt;nbinsx;i++)</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>                                                dest[i]=new
float[nbinsy];   </span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   TH2F *trans = new
TH2F(&quot;trans&quot;,&quot;Background
estimation&quot;,nbinsx,xmin,xmax,nbinsy,ymin,ymax);</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   TFile *f = new
TFile(&quot;TSpectrum2.root&quot;);</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   trans=(TH2F*)
f-&gt;Get(&quot;back3;1&quot;);</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   TCanvas *Tr = new
TCanvas(&quot;Transform&quot;,&quot;Illustation of transform
function&quot;,10,10,1000,700);</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>   for (i = 0; i &lt; nbinsx;
i++){</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>     for (j = 0; j &lt;
nbinsy; j++){</span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>                    </span><span
lang=FR style='font-size:10.0pt'>source[i][j] = trans-&gt;GetBinContent(i + 1,j
+ 1); </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>                 }</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>   }           </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>  
TSpectrumTransform2 *t = new TSpectrumTransform2(256,256);   </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>  
t-&gt;SetTransformType(t-&gt;kTransformCos,0);   </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>  
t-&gt;SetRegion(0,63,0,63);   </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>  
t-&gt;SetEnhanceCoeff(5);</span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'>  
t-&gt;Enhance(source,dest);   </span></p>

<p class=MsoNormal><span lang=FR style='font-size:10.0pt'> </span><span
style='font-size:10.0pt'>  trans-&gt;Draw(&quot;SURF&quot;);     </span></p>

<p class=MsoNormal><span style='font-size:10.0pt'>}</span></p>

</div>

<!-- */
// --> End_Html

   Int_t i, j;
   Double_t a, old_area = 0, new_area = 0;
   Int_t size;
   Float_t *working_vector = 0, **working_matrix = 0;
   size = (Int_t) TMath::Max(fSizeX, fSizeY);
   switch (fTransformType) {
   case kTransformHaar:
   case kTransformWalsh:
      working_vector = new Float_t[2 * size];
      working_matrix = new Float_t *[fSizeX];
      for (i = 0; i < fSizeX; i++)
         working_matrix[i] = new Float_t[fSizeY];
      break;
   case kTransformCos:
   case kTransformSin:
   case kTransformFourier:
   case kTransformHartley:
   case kTransformFourierWalsh:
   case kTransformFourierHaar:
   case kTransformWalshHaar:
      working_vector = new Float_t[4 * size];
      working_matrix = new Float_t *[fSizeX];
      for (i = 0; i < fSizeX; i++)
         working_matrix[i] = new Float_t[2 * fSizeY];
      break;
   case kTransformCosWalsh:
   case kTransformCosHaar:
   case kTransformSinWalsh:
   case kTransformSinHaar:
      working_vector = new Float_t[8 * size];
      working_matrix = new Float_t *[fSizeX];
      for (i = 0; i < fSizeX; i++)
         working_matrix[i] = new Float_t[2 * fSizeY];
      break;
   }
   switch (fTransformType) {
   case kTransformHaar:
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            working_matrix[i][j] = fSource[i][j];
            old_area = old_area + fSource[i][j];
         }
      }
      HaarWalsh2(working_matrix, working_vector, fSizeX, fSizeY,
                  kTransformForward, kTransformHaar);
      break;
   case kTransformWalsh:
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            working_matrix[i][j] = fSource[i][j];
            old_area = old_area + fSource[i][j];
         }
      }
      HaarWalsh2(working_matrix, working_vector, fSizeX, fSizeY,
                  kTransformForward, kTransformWalsh);
      break;
   case kTransformCos:
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            working_matrix[i][j] = fSource[i][j];
            old_area = old_area + fSource[i][j];
         }
      }
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformForward, kTransformCos);
      break;
   case kTransformSin:
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            working_matrix[i][j] = fSource[i][j];
            old_area = old_area + fSource[i][j];
         }
      }
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformForward, kTransformSin);
      break;
   case kTransformFourier:
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            working_matrix[i][j] = fSource[i][j];
            old_area = old_area + fSource[i][j];
         }
      }
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformForward, kTransformFourier);
      break;
   case kTransformHartley:
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            working_matrix[i][j] = fSource[i][j];
            old_area = old_area + fSource[i][j];
         }
      }
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformForward, kTransformHartley);
      break;
   case kTransformFourierWalsh:
   case kTransformFourierHaar:
   case kTransformWalshHaar:
   case kTransformCosWalsh:
   case kTransformCosHaar:
   case kTransformSinWalsh:
   case kTransformSinHaar:
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            working_matrix[i][j] = fSource[i][j];
            old_area = old_area + fSource[i][j];
         }
      }
      General2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformForward, fTransformType, fDegree);
      break;
   }
   for (i = 0; i < fSizeX; i++) {
      for (j = 0; j < fSizeY; j++) {
         if (i >= fXmin && i <= fXmax && j >= fYmin && j <= fYmax)
            working_matrix[i][j] *= fEnhanceCoeff;
      }
   }
   if (fTransformType == kTransformFourier || fTransformType == kTransformFourierWalsh
        || fTransformType == kTransformFourierHaar) {
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            if (i >= fXmin && i <= fXmax && j >= fYmin && j <= fYmax)
               working_matrix[i][j + fSizeY] *= fEnhanceCoeff;
         }
      }
   }
   switch (fTransformType) {
   case kTransformHaar:
      HaarWalsh2(working_matrix, working_vector, fSizeX, fSizeY,
                  kTransformInverse, kTransformHaar);
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            new_area = new_area + working_matrix[i][j];
         }
      }
      if (new_area != 0) {
         a = old_area / new_area;
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j] * a;
            }
         }
      }
      break;
   case kTransformWalsh:
      HaarWalsh2(working_matrix, working_vector, fSizeX, fSizeY,
                  kTransformInverse, kTransformWalsh);
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            new_area = new_area + working_matrix[i][j];
         }
      }
      if (new_area != 0) {
         a = old_area / new_area;
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j] * a;
            }
         }
      }
      break;
   case kTransformCos:
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformInverse, kTransformCos);
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            new_area = new_area + working_matrix[i][j];
         }
      }
      if (new_area != 0) {
         a = old_area / new_area;
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j] * a;
            }
         }
      }
      break;
   case kTransformSin:
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformInverse, kTransformSin);
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            new_area = new_area + working_matrix[i][j];
         }
      }
      if (new_area != 0) {
         a = old_area / new_area;
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j] * a;
            }
         }
      }
      break;
   case kTransformFourier:
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformInverse, kTransformFourier);
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            new_area = new_area + working_matrix[i][j];
         }
      }
      if (new_area != 0) {
         a = old_area / new_area;
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j] * a;
            }
         }
      }
      break;
   case kTransformHartley:
      FourCos2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformInverse, kTransformHartley);
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            new_area = new_area + working_matrix[i][j];
         }
      }
      if (new_area != 0) {
         a = old_area / new_area;
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j] * a;
            }
         }
      }
      break;
   case kTransformFourierWalsh:
   case kTransformFourierHaar:
   case kTransformWalshHaar:
   case kTransformCosWalsh:
   case kTransformCosHaar:
   case kTransformSinWalsh:
   case kTransformSinHaar:
      General2(working_matrix, working_vector, fSizeX, fSizeY,
                kTransformInverse, fTransformType, fDegree);
      for (i = 0; i < fSizeX; i++) {
         for (j = 0; j < fSizeY; j++) {
            new_area = new_area + working_matrix[i][j];
         }
      }
      if (new_area != 0) {
         a = old_area / new_area;
         for (i = 0; i < fSizeX; i++) {
            for (j = 0; j < fSizeY; j++) {
               fDest[i][j] = working_matrix[i][j] * a;
            }
         }
      }
      break;
   }
   for (i = 0; i < fSizeX; i++) {
      delete[]working_matrix[i];
   }
   delete[]working_matrix;
   delete[]working_vector;
   return;
}


//////////  END OF ENHANCE2 FUNCTION/////////////////////////////////

//______________________________________________________________________
void TSpectrum2Transform::SetTransformType(Int_t transType, Int_t degree)
{
//////////////////////////////////////////////////////////////////////////////
//   SETTER FUNCION                                                      
//                                                     
//   This funcion sets the following parameters for transform:
//         -transType - type of transform (Haar, Walsh, Cosine, Sine, Fourier, Hartley, Fourier-Walsh, Fourier-Haar, Walsh-Haar, Cosine-Walsh, Cosine-Haar, Sine-Walsh, Sine-Haar)
//         -degree - degree of mixed transform, applies only for Fourier-Walsh, Fourier-Haar, Walsh-Haar, Cosine-Walsh, Cosine-Haar, Sine-Walsh, Sine-Haar transforms
//////////////////////////////////////////////////////////////////////////////      
   
   Int_t j1, j2, n;
   j1 = 0;
   n = 1;
   for (; n < fSizeX;) {
      j1 += 1;
      n = n * 2;
   }
   j2 = 0;
   n = 1;
   for (; n < fSizeY;) {
      j2 += 1;
      n = n * 2;
   }
   if (transType < kTransformHaar || transType > kTransformSinHaar){
      Error ("TSpectrumTransform","Invalid type of transform");
      return;       
   }
   if (transType >= kTransformFourierWalsh && transType <= kTransformSinHaar) {
      if (degree > j1 || degree > j2 || degree < 1){
         Error ("TSpectrumTransform","Invalid degree of mixed transform");
         return;          
      }
   }
   fTransformType = transType;
   fDegree = degree;
}
    
//______________________________________________________________________
void TSpectrum2Transform::SetRegion(Int_t xmin, Int_t xmax, Int_t ymin, Int_t ymax)
{
//////////////////////////////////////////////////////////////////////////////
//   SETTER FUNCION                                                      
//                                                     
//   This funcion sets the filtering or enhancement region:
//         -xmin, xmax, ymin, ymax
//////////////////////////////////////////////////////////////////////////////         
   if(xmin<0 || xmax < xmin || xmax >= fSizeX){ 
      Error("TSpectrumTransform", "Wrong range");      
      return;
   }         
   if(ymin<0 || ymax < ymin || ymax >= fSizeY){ 
      Error("TSpectrumTransform", "Wrong range");      
      return;
   }            
   fXmin = xmin;
   fXmax = xmax;
   fYmin = ymin;
   fYmax = ymax;   
}

//______________________________________________________________________
void TSpectrum2Transform::SetDirection(Int_t direction)
{
//////////////////////////////////////////////////////////////////////////////
//   SETTER FUNCION                                                      
//                                                     
//   This funcion sets the direction of the transform:
//         -direction (forward or inverse)
//////////////////////////////////////////////////////////////////////////////      
   if(direction != kTransformForward && direction != kTransformInverse){ 
      Error("TSpectrumTransform", "Wrong direction");      
      return;
   }         
   fDirection = direction;
}

//______________________________________________________________________
void TSpectrum2Transform::SetFilterCoeff(Float_t filterCoeff)
{
//////////////////////////////////////////////////////////////////////////////
//   SETTER FUNCION                                                      
//                                                     
//   This funcion sets the filter coefficient:
//         -filterCoeff - after the transform the filtered region (xmin, xmax, ymin, ymax) is replaced by this coefficient. Applies only for filtereng operation.
//////////////////////////////////////////////////////////////////////////////      
   fFilterCoeff = filterCoeff;
}

//______________________________________________________________________
void TSpectrum2Transform::SetEnhanceCoeff(Float_t enhanceCoeff)
{
//////////////////////////////////////////////////////////////////////////////
//   SETTER FUNCION                                                      
//                                                     
//   This funcion sets the enhancement coefficient:
//         -enhanceCoeff - after the transform the enhanced region (xmin, xmax, ymin, ymax) is multiplied by this coefficient. Applies only for enhancement operation.
//////////////////////////////////////////////////////////////////////////////      
   fEnhanceCoeff = enhanceCoeff;
}
    

Last change: Wed Jun 25 08:53:15 2008
Last generated: 2008-06-25 08:53

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.